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Abstract

An asymptotic model is presented for the crack—micro-crack interaction in a material characterized by a low
resistance to shear. The material mentioned is obtained by homogenization of the discrete periodic structure used in
the design of a catalytic monolith combustor. The results of the asymptotic analysis enable one to compute the
stress-intensity factors and predict the shape of the crack trajectory. © 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

In this work we analyse the model of fracture for a homogenized domain associated with a catalytic
monolith combustor studied earlier by Kolaczkowski et al. (1998). A detailed description of catalytic
and non-catalytic combustion reactions that take place in a catalytic monolith is available in Hayes and
Kolaczkowski (1997). In this paper, we consider crack propagation in a ceramic monolith with square
shaped cells. A cross-section of the monolith is illustrated in Fig. 1. The cellular monolith structure may
be formed by extrusion of material in the form of a paste through a die, and then firing at high
temperatures to form the ceramic.

In a catalytic combustion application, combustible gaseous species flow in a stream of air in the
channels, which are coated with a thin layer of wash-coat that contains the catalyst. It is on the surface
of the walls (in the layer of wash-coat) where, the catalytic combustion takes place. As described in
Hayes and Kolaczkowski (1997) p. 383, channels in a monolith reactor may not operate in an identical
manner. For example, in the event of a fuel maldistribution across the face of the monolith, higher

* Corresponding author. Tel.: +44-151-7944740; fax: +44-151-7944061.
E-mail address: abm@liv.ac.uk (A.B. Movchan)

0020-7683/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(98)00340-0



1900 Y.A. Antipov et al. | International Journal of Solids and Structures 37 (2000) 1899-1930

N

Fig. 1. Cracks in a lattice.

concentrations of fuel could lead to higher rates of reaction and hence, higher temperatures. This would
result in variations in temperature across the cross-section of the monolith which as a result of thermal
stresses could cause a crack to form. The monolith structure is considered to be a homogenized material
which is anisotropic and for certain types of lattices it has a low resistance to shear. We present the
asymptotic formulae for effective elastic moduli to high-order accuracy, and these formulae take into
account the geometry of the periodic structure as well as the shape of junctions between the elements of
the structure. A crack is considered in a homogenized orthotropic material with a small shear modulus
and it interacts with a small micro-crack of arbitrary orientation. Here we develop an accurate
asymptotic procedure for evaluation of the stress-intensity factors and prediction of the shape of the
crack propagating in a catalytic monolith combustor containing micro-cracks.

Asymptotic approach to the analysis of the two-dimensional elastic interaction between the main
crack and micro-cracks was implemented by Hori and Nemat-Nasser (1987) and Gong and Horii (1989)
for the case of isotropic media. Assuming that the distance between the main crack and a micro-crack is
large compared to the length of the micro-crack, the authors presented the series approximations for the
stress-intensity factors and the numerical simulations of local stability of the main crack. For the class
of isotropic materials the asymptotic analysis of crack deviation is presented in Cotterell and Rice
(1980), Movchan et al. (1998) and the crack—defect interaction accompanied by the crack deviation is
discussed in Movchan et al. (1991) and Movchan and Movchan (1995). It is important to mention that
the present problem (for a material with a small shear modulus) is singularly perturbed, and analytical
models of fracture for this type of media were not published elsewhere.

In Section 2 we present the governing equations and the form of the matrix of effective elastic moduli.
Section 3 describes the main steps of the asymptotic algorithm, and the model problems involved are
discussed in Section 4. There are three main steps: (i) analysis of the field associated with a large crack;
(i1) construction of the dipole field associated with a micro-crack arbitrary oriented in orthotropic media
with low resistance to shear; (iii) evaluation of the stress-intensity factors. Asymptotic formulae for the
stress-intensity factors are derived in Section 5. The effects of singular perturbation associated with a
small shear modulus are discussed in Section 6, where we consider the case of small area fraction for the
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composite media. Numerical results are presented for the perturbation of the stress-intensity factors due
to interaction of the large crack with a micro-crack. The results of computations show the presence of a
high-gradient region in a strip containing a micro-crack. The results of the asymptotic analysis enable us
to proceed further and predict the shape of the crack propagating in a catalytic monolith combustor
with micro-defects. Asymptotic formulae and results of numerical simulations for the crack trajectories
are included in Section 7.

2. Formulation of the problem

Let u be the displacement field which satisfies the boundary value problem
@T<i>%’9(i>u —0 in Rz\{MUm.}
0x ax ‘P

@T(n)y@(;x)u =p(x) onM*| JmE, (2.1)

where M, m, are the cracks specified by

M= {x: |xi|< a, x> =0},

m, = {x: Xj= x]Q + it |1 < 8}, 2.2)

and x/Q, l; are constants (see Fig. 2). The second crack m, has a small length defined by a non-
dimensional parameter 0 < ¢ < 1; for the sake of convenience we assume that /; = cos f8, /, = sin f§, where
p characterises the orientation of the crack m,. The differential operator & is given as

Xa /\ B

P
-
.

,~°  crack my

_a crack M a X

Fig. 2. Geometry of the problem: a macro-crack M and a micro-crack m,.
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and the positive definite matrix # of elastic coefficients has the block-diagonal form

e fep 0
H = f6’12 (9} 0 , 0 <f<< 1; (2.4)
0 0 flex

so that the material is orthotropic and the shear modulus is small; the quantities ¢; have the same
order-of-magnitude. The vector n denotes the unit outward normal on the crack faces, and the smooth
traction p is supposed to be self-balanced, i.e.

pids=0, j=1,2; J (X2p1 — x1p2)ds = 0. (2.5)

-y (Mi —mF )

Jvi(M+ —mZ)

We seek the solution u which vanishes at infinity.

The above formulation involves two small parameters ¢ and f, where the first one defines the
normalized size of the crack m,, and the second parameter characterises the resistance of elastic medium
to shear.

Our objective is to develop an accurate asymptotic algorithm for description of the field u and the
stress-intensity factors at the ends of the crack M. Finally, our intention is to show that this algorithm
enables one to predict the trajectory of a crack propagation in a non-homogeneous low-shear-modulus
medium.

The medium is a monolith with square shaped cells as illustrated in Fig. 1. The channels are small
(e.g. 1 x 1 mm) and the wall thickness is about 0.1 mm. The matrix # gives the components of the
homogenized elastic moduli, and it has the form

l+df dof 0
yf:g df  14+df 0 ’ Q:M 2.6)
2 2 2u+ A

where f'is the area fraction for the region occupied by the elastic material with the Lamé elastic moduli
A and u. The leading-order terms in (2.6) were discussed in Kolaczkowski et al. (1998). The constant
coefficients d;, d, and d; depend upon the shape of the junction region. For a particular case of the
junction shown in Fig. 1 and for Poisson’s ratio v = 0.3 we have d; =0.933, d, =—0.229 and
dy = 1.196. Details of the derivation are given in Appendix B.

3. Main steps of the asymptotic algorithm

The asymptotic approximation of the displacement field u has the form
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u ~ v(x; /) + w(¢, & /), (3.1

where v is the field associated with the elastic plane containing a single crack M; the boundary layer
field w depends on the scaled coordinates
Xj— x_Q

éj = e : > ] = 19 25 (32)

and it is introduced to compensate for an error produced by the field v in the boundary conditions (2.1)
imposed on m*. The field w depends on both small parameters f and ¢ (this dependence is unknown a
priori), and we aim to specify the asymptotic formula for w when |&| — oo.

Finally, the resulting field u yields non-zero tractions on M* and hence, non-zero stress intensity
factors, which are different from ones associated with the field v.

The asymptotic study involves three main steps:

1. Analysis of a single-crack problem and specification of the stress field o(v).

2. The boundary layer analysis for a small crack m,.

3. Derivation of asymptotic formulae for the stress intensity factors; applications to modelling of a
quasistatic crack propagation.

4. Model problems
4.1. Singular integral equations describing a crack in orthotropic media

Let ¢,, ¢, be Holder’s functions on (—a, a), except its ends, have at the points ¢ =a and { = —a an
integrable singularity

O =0{aF O}, E->+aF0

and satisfy the orthogonality condition

| s@ae=o. (4.1)
Then the following integral equations with the Cauchy kernel

A (¢ /0 :

2P g mi<a G=12) (42)

T J_q é — X1

have a unique solution; here we assume that f; are smooth and 4; are real constants which depend on
the elastic moduli of the media.

In the physical model, the functions ¢; describe the derivatives of the displacement jumps across the
crack. The functions f; represent the components of tractions. Namely, if u=(u,, u,) is the displacement
vector then

3Llj

¢j(x1)=§—)2(x1,+0)— (x1,—0), supp ¢, €[—a,d] (4.3)

8X1

and
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where ¢;; are stress components associated with the displacement u. The constants /; are defined by
A= Aa1, 2= 21> where Ay, 41, are introduced in Appendix A [formulae (A.23), y = 0]. The solution of
eqns (4.2) under the condition (4.1) is given by the Keldysh—Sedov formula (Sedov, 1972)

Va2 —Ef(&)

l a
Pi(x1)=—
o i/ — x? Jf“ ¢—x

The stress components exhibit the square root singularity at the ends of the crack, and the stress-
intensity factors are defined by

K = lim 0m022('x190)7

X|1—+a+

dé. 4.5)

K;f = lim ,/2n|x1 Falop(xy, 0). (4.6)

X1—+at

The explicit formulae for the stress-intensity factors are

L 1 a+§ +1/2
K; __ﬁj f2(§)< 5) d¢,
+1/2
Ki=——=| Aot e @)

4.2. Dipole field associated with a crack in orthotropic media

Let u be the displacement field which satisfies the boundary value problem

3%u, 3%uy 1, 8 (du dw
- - g — e — = O
llax% +‘f6128xl aXQ +2f 63333(,'2 8)(2 +8X1 ’
zuz +fc 82u1 + lf2 i % + % =0. xe¢ [Rz\{m} (4 8)
2 8x§ 128)('1 8)(?2 2 %38)('1 8)62 3)(71 - ’ '
and
a1l o12 5
n +n =p, xXem—, 4.9
1(012) 2<022> P “9)
ul| =0 as [x]|— oo. (4.10)

Here n=(n;, n,) is the unit outward normal on the crack surface, and p is a constant vector of tractions.
The stress components g; are specified by
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u . du
a1 2011—1+fC12 —2, (4.11)
8)(?1 8)(?2
1 2 31/{1 8u2
_1 Our | Ouy 4.12
o1 2f C33<8x1 +8x2)’ (4.12)
ou au
02 = e + fe1y —. (4.13)
8)(?2 8)(?1
The crack m is defined as m = {x: x; = [, |[t| < 1},/; = cos f,l, = —sin f (see Fig. 2). The problem

(4.8)—(4.10) is solvable and its solution is presented in Appendix A (y = f§). Here we note that the stress
components in the plane with the crack are equal to

2 m—+n+k+j 4
( l) 7, m+n+k
1

1o
mn ? = wnon, I
Tnn(M1> M2) o2 91y ;g" " Z

J=

1/2 12
x[<m+"z) (1) -1+ ) } @14
i i K

where (1,,1,) are local coordinates associated with the crack

Vi

N = X1 cos f+ xsin f,

Ny = —x sin f+ x; cos f, (4.15)

and

<. (4.16)

arg(mi1+%>
J

The constants o, gk, ; and v; are specified by formulae (A.28), (A.26), (A.17) and (A.19) in Appendix
A =p).

As ||g|l — oo the stress components have the following asymptotic behaviour

1 2 2 ( _ 1);11+)1+/<J¢ju,,1+,1+k,4 7 _3
O'mn(’//la’/IZ):_z—ng Im Z 5 + O <171 +—> . (4.17)
2EF vt a) K

Formula (4.17) shows that at infinity we deal with the dipole field; namely it decays with the same rate
as the first-order derivatives of components of Green’s tensor.

5. Asymptotics of the stress-intensity factors
(1) First, consider the crack M whose faces M* are loaded by given tractions and assume that these

tractions are self-balanced (the principal force and moment vectors are equal to zero). It corresponds to
the limit case (when ¢ — 0) of the problem (2.1) when we neglect the presence of the small crack m,. Let
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v denote the displacement field. Then ¢, = [dvi/dx1], ¢, = [dv2/dx;] are specified by (4.5), where
Ji=pj(x1) are given tractions, and Aj, A, are replaced by /i, 41> defined in (A.23). The stress
components ¢;(v; X) are defined by (A.20), where y = 0. We introduce the notation

0'2 = aij(v; xo) (5.1

for the leading terms of stress components evaluated in the vicinity of the small crack m,. Here, we
assume that tractions on m> vanish. The field v produces an error in the traction boundary condition

on the faces m}:
> aln;. (5.2)
J

(2) In order to compensate for the above error we introduce a boundary layer, i.e. a function w(§)
specified in scales coordinates

W0
€:x8x, (5.3)

as a solution of the following boundary value problem
(L wa( 2 w(E)=0 in R*\m
ac) a¢ N ’

@T(n)yf@<;£>w(z:) =—¢"-n on m*,

w(&)—0 as €] — oo. (5:4)

Here m is the scaled crack

m={& &=t 11 <1}; (5.5)
l; are the same constants as in (2.2). The field

V(x) + ew(é) (5.6)
satisfies, to order O(¢) the homogeneous traction boundary condition on m*. Namely,

O'En)(V(X) + ew(&); x) = J?(”) +&x=x". VO’En)(V; XO) + af»”)(w; &)+ O(I|X — x0||2), X € m;. (5.7
Equivalently,

O'l(~n)(V(X) + ew(&); x) =& - VUEH)(V; x’) + 0@, xem,. (5.8)

In the formulae above we adopted the notation

O = py (TN ) 40 (‘“2> 5.9
o = (7 ) (7). 59)

where n = (n;, ny) is the unit outward normal. In the local rotated coordinates
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n— <cos p —sinf )5 (5.10)

sin f§ cos i

the stress components have the asymptotics (4.17) at infinity where y = f, 4;, g; are specified by
formulae (A.23) and (A.26), and f}, f> are defined as

h=f1= % sin 2[3(0(1)1 — agz) — COSs 2ﬂ6?2,

fr =1% = —sin® fa¥, — cos® B3, + sin 2Ba",. (5.11)

(3) The field ew(¢) produces a discrepancy in the traction boundary conditions (2.1) on the faces M* of
the ‘large’ crack. The stress components ¢;:(ew; X) evaluated on M* have the order O(¢?) [see (4.17)]. In
order to compensate for this error we introduce a field £q(x) such that

@T<;—x>,}i’@(%>q(x) =0 inR*\M,

QT(n)y@(;—x>q(x) = +F(x) onM*, (5.12)

where

Fy =4sin 2B[Zaa (1. x5) = Z1i(x{, x3)] — cos 2BZ1x(x 1, x3),
F, = —sin? BE1i(x], x3) — cos’ BExn(x{, x3) —sin 2BZ 15 (x 1, x3), (5.13)

x| =cos f(x; — x7) — sin px),

X5 = —sin ﬂ(xl — x?) — cos ,Bx(z), (5.14)
and
1 2 . 2 ( _ 1)"7+'7+/<+j'u4_<m+n+k—4
Zmn(nla ’72) = _W 8 Im ﬁ] 2 s (515)
22 k=1 =1 v;f<,71 +_i>
Hi
g = 22 25* 12. 1’ g = 21. 25* 11 1' (516)
0 0

The expressions for the quantities 47, d, o35, i, vi are obtained from (A.23), (A.27), (A.8), (A.17)

mn?

and (A.19) by replacing y by the value . Also we assume that the field q(x) decays at infinity.
On this step the approximation for the displacement vector becomes

u(x, &)~ v(x) + ew(n) + £2q(x). (5.17)

As x1— za and x, = 0, the stress components ¢, are specified by
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1
= e [K% (V) + K (q)] + smaller terms, (5.18)
v 1
1
G = m [KIJ—r (v)+ 32K1J—r (q)] + smaller terms. (5.19)
v I
The correction terms &K |*(q), ¢*K j;(q) associated with the field q have the form
1 1 2 1 (n? n?
+ _ J— J
Km (q) = 5\/2; Apn Im ]:Zl Enjhj_i m — //1117 , arg hji [S ( - T, 7'5), (520)

where K is equal to K- for m = 1, and K} for m = 2; the quantities E,; are defined by formulae

1 2 TR
Ej=-———5 (=D Ny (n.j=1,2), (5.21)

1 (., . 1 . 1 .
Aj]l = F(/Lzz sin’ p— 5 A12 sin 2ﬂ>, Ajlz = E( — Ay sin 23 + A1 cos 23),
J 7

1 1 1
/\/-13 = /An cos’ B+ § A1z sin 23, /\/21 = —*2< — A sin’ B+ E 11 sin Zﬁ),
g y W

1 1
/\[22 = E (121 sin 2ﬂ — /111 COS 2ﬁ), /\j23 = —)»21 COS2 ﬂ — 5 )41 sin 2ﬁ. (5.22)

J

The quantities /;+, p;, depend on the position of the small crack and the material properties

0 .
b =altat 2 =0 (5.23)
Pj pj-
sin , cos
Py = cos ff— ﬁ, p;— = sin i + uﬁ' (5.24)
J J

6. Asymptotics for small area fraction f

In this section we analyse the case when the parameter f introduced in (2.6) is small, i.e., the elastic
medium exhibits low resistance to shear.
The compliance matrix #~" has the form
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[l+df b 0
5, 5
L2 & 1+dy
I _= .1
H 0 5. 7. 0 , (6.1)
4
0 0
i A +dyf)

where 6, = (1 +d, f)* — d3f?. The quantities a; [see (A.8)] are defined by

2(1+df 1, .
o] = 0y = §< fé*lf — Edf Sln2 2ﬁ>

L2 8 cos® 28 N 2sin® 28
CTolf0+dn  fArdif-d) |

2 dr» sin’2p
alZ—Q(_é*‘f‘zdj)a

o1 = —0Orp = ﬂ sin 4ﬁ, (6.2)
0
where
l+df o 4
dr — Ly 22 B 6.3
=1 T T P+ ) ©
Characteristic polynomial. For the case f =0, /2 eqn (A.17) is written as
0 dr f3 .
2,4 * 2, 2, 42
— =0. 4
fz+1+d1f(1+d3f 4 )Z +f7=0 64)

Note that the equation degenerates (it reduces its order) as f— 0. The solutions of (6.4) are given by
Z1 = [y, 22 = Mo, Z3 = — Uy, 24 = — i, where Zp; = 0(j = 1,2) and

1/2
i TR 45— (4 dsf)
ﬂf—fRf {”(_1)](1_@) ’ Rf_4(l+d1f)(l+d3f)' ©65)
As f—0,
] d 2/2i d
mzi%(u~¥>+ovﬂ o = f%}+%§+ou> (66)

So pu;— 0 and y, — oo as f— 0; here dy = d; — ds. Thus, two roots z; and z3 are getting small, whereas
the moduli |z5| = |z4| are large. Accordingly, the quantities v, v, from (A.19) and /; [see (A.23)] are
approximated by the formulae
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S el [1 + %ﬂ O(fz)},

s
vy = %ﬁ’[ <o) 67)
and
A=An=0, ii= Ql—‘f '2[1 + % f+ 0(/‘2)}, k,j=12 k#j. (6.8)

Formulae (A.26) imply

16 dy . . .
gj(X1)=W[l—7°.f+ O(fz)i|fj(xl), j=12. (6.9)

Examples:
(1) The case when the crack m, is parallel to M(B = 0). Assume that the crack faces M* are loaded by
constant tractions =+( fi,f>) and that the crack m, is free of tractions. The integral equations (4.1)
reduce to

1 d (¢ ©() . 8\/5[ do > }
ndxlj e dé—sz 1 2f+0(f) fn (6.10)
and hence, the displacement jumps across the crack M grow as f tends to 0, i.e.
8 dy
D,(&) = fo[fz 2 +0(1)]\/ - &, (6.11)

It reflects the fact that the problem is singularly perturbed with respect to small f. In the text below we
consider expansions in ¢ assuming that f'is fixed. The stress-intensity factors K ?’i, K %’J—r are finite and
given by formulae (4.7) with f;, j = 1, 2, being constants:

= —foi/na, K%t =—fi/na. (6.12)
The unperturbed stress components O’? associated with the crack M have the form

k
( _ l)m+n+ »+j'um+n+k 4

a0 (x9, x9) Zg/‘lmz = J N;, (6.13)
g
where
\(H]? H?
S 2(H;12 ur) o

The quantities H;; are defined as follows
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0
H,=x"+24q |agH.,|<n 6.15
JE 1 g j+
K

As f— 0, the coefficients N, N, have the following asymptotics

2.2 :
N, = ) ao S| 1= i (x? - z\/idoxg) +0(r%) |, (6.16)
16(x2) 2_)(:8
Ny=1-m —ngHX?Mz.f(l - %f) +afP+0(f), x> a (6.17)
Ny =1—isgn x?ml +m2f<l — %f) +icrf* + 0(]"3), |x(1)| <a, (6.18)
where
0 0,2
my = A3l Xad (6.19)

—F—, hh = ,
()" — ] 2v2)(x9)7 — a2

¢1, ¢, are real constants; due to (6.6) and (6.15) the branch-cuts are chosen in such a way that (x!+a)
= —i|x+a|"? when x{+a <0.

172

Remark:. The formulae (6.17) and (6.18) show that the function N, expanded in f has singular terms as
|x?| — a. The expansion in f gives reliable results outside a neighbourhood of the strip |x(1)| < a+ ¢ and
when |x(2)| > &) where g1, & are small positive constants. It illustrates the effect of the boundary layer
that occurs for small f~—the original boundary value problem is singularly perturbed as f— 0.

When |x?| > a formulae (6.13), (6.16) and (6.17) yield as f— 0

201 _ 2
aa(x?,xg):—‘w(l—ml— « )fz+0(f4)-

2(x3)°

0% (x%, x9) = (1 —my) f» + O(f?),

0 (o0 oy S —dof) a? B h my sgn x .
alz(xl,xz)— 3 |:<2(xg)2 1+m1)4 +—\/§ fzj|+0(f ) (6.20)

Then, the correction terms for the stress-intensity factors at the ends of the crack M are specified by
formulae (5.20), (5.16) and (5.11) where the components a?j are given by (6.20). The answer for the
correction terms for the stress-intensity factors is simplified to the form

&2 /ma sgn xO(1 —my) . X
AK{ = g =m)e o)

2x§Fa)y (xf) - @




1912 Y.A. Antipov et al. | International Journal of Solids and Structures 37 (2000) 1899-1930

. _ngz /ma sgn x9(1 — ml)(?_x(l’ ia)xg (1 B @3)6? +a

= 3/2 7 70 .
16(x? $a)[(x?)2—a2] 2xita

(2) The case when the crack mg is perpendicular to M (f=m/2). The asymptotic procedure used for this

case is similar to the one outlined above. When the small crack m, is located outside the strip |x;| < a
we derive the following asymptotic formulae for the perturbations of the stress-intensity factors

f) fr+0(f*%). (6.21)

2 r4 B 0 0 0
AKE = _%m maPy 4 x9(2x¢ ia)zsgn )613/2132 +o(f9),
(97 )| () -]
274 r 0T
AKF :—i\/ﬁ m3pz_|_wp1 + (/). (6.22)
16 =] (x9)

Here, xg # 0, |x?| > a, the quantities m;, m, are defined in (6.19), and m5 as well as Py, P, are given by
sgn x{ 1

ms = > + 0 PR
xX9Fa)y/(x9) —a? (x9)
(] Fa)y (x9

e a )
Pi==Z(1-m—-—=]
8( 2(x3)’

a? 1 —m fomy sgn xY
P, = - /1 + L (6.23)
(16(xg)2 8 ) 2V2

We remark that the above asymptotic formulae can be used outside neighbourhoods of the strip
|x?| < a and the x-axis. Also, one can see that the orientation of the crack m, is important—in the
present case (f = n/2) the correction terms are of order ¢2f* which is smaller compared to the previous
case (f =0). This simple illustration shows the qualitative difference between the crack—defect
interaction in the isotropic medium, and in the medium which is orthotropic, with a small shear
modulus.

7. Perturbation of the crack trajectory

In this section we consider an example involving a semi-infinite crack
M®(X)={x:x,=0,x; <X}

interacting with a small crack m, described in (2.2). We assume that the displacement u satisfies the
equilibrium system (2.1) and homogeneous traction boundary conditions

QT(n)Jf@(aa—x>u =0 onM>* | Jmf, (7.1)



Y.A. Antipov et al. | International Journal of Solids and Structures 37 (2000) 1899-1930 1913

where M>* m* denote the crack faces. At infinity, we assume (see Sih and Liebowitz, 1968) that

KO
O~
" N 2nr

where

Y,.(0), r—oc (mn=1,2), (7.2)

¥~ X=rcos, x3=rsin0,

1 m—+n—3 m+n—3
lIJmn(e) = ( - 1)m+nER = 172 A 1/2 . (73)
Ha = M| (cos 0+ p5 ' sin 6) (cos 0+ pi! sin 0)

Due to the interaction with a small crack, the stress-intensity factor Ky at the end of M* will not be
zero. However, if we replace M*°(X') by a crack M°(X).

MX(X) = {x:x; = 82/1()61), X1 < X},
where / is smooth then, by appropriate choice of /2, we can achieve that K = 0 i.e. M{° will ‘propagate’
as a Mode I crack. The latter problem is singularly perturbed, and for the isotropic case the asymptotic

algorithm is described in detail by Movchan et al. (1998). Here, we present the summary of results for
the case of orthotropic medium. First, the stress-intensity factor Kp is given by

X
¢ 2Ky = gh'(X)K\” + J {(x1)Fi(x1, X)dx; =0, (7.4)

where {(x) is the Mode II weight function for a semi-infinite crack

/ 2
{(x1) = m, (7.5)

and F is the first component of the applied load produced by the small crack m,

2
Fl(xl, X) = /lm Im Z Elj(X) (76)

5.
=1 (xl —x¥— xgpjfl)

The coefficient ¢ in (7.4) is equal to 1/2 (the same as in the isotropic case) due to the fact that the
microcrack is located on the symmetry axis of the orthotropic two-dimensional medium. In general, for
an arbitrary orientation of the crack this coefficient should be replaced by

g=1+-R—. (17

Due to formulae (5.21) we have

K%O) 2
Ej(X)=——— F(X)Qy, 7.8
ij m}~21 k; 8k kj (7.8)
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(=D [ sin2 28 sin2
Q= k *(121,) _sin *2ﬁ n cos* p n sin 23 ’ 7.9)
20071V piy 25 1 2
where gf(X) are defined by (5.16) and
[iX) =— sin? B, (X) — cos? BY¥5,(X) + sin 2¥7,(X),
1 : * * *
[3(X) = 5 sin 2B[W1,(X) — W (X)] — cos 2B¥T,(X), (7.10)
1 m—+n—3 m+n—3
W (X0 = (= 1" 2 e il =L (7.11)
b [ (= X+ )T (= X x?)
The crack trajectory is defined from differential equation (7.4)
2 2 X X9 —3/2 x9
h(X):ImZZijJ g,’f,(X)(x(l)—i——z—X) dx, arg(x(l)—i——z—X) € (—m, m). (7.12)
=1 k=1 —o0 Pj pj

The results of calculations show that the deflection at infinity is the same as the one at the point

X1 =X(]).

8. Numerical results

Here, we present numerical illustration of the asymptotic formulae derived in the sections above. The
tractions components (o2 = —1, o1 = 0) are specified on the faces of the macro-crack, and the micro-
crack is assumed to be free of fractions. First, we give examples of calculations for the stress-intensity
factors. Second, we analyse the trajectory of the crack interacting with a micro-crack. Finally, a local
stability is studied for a large crack in an inhomogeneous solid.

(1) Evaluation of the stress-intensity factors. In the numerical calculations we used formula (5.20) for
the stress-intensity factors. We remark that the asymptotic formulae (6.21) and (6.22) give good
agreement with (5.20) when the micro-crack is located outside a neighbourhood of the strip |x| < a.

In Figs. 3 and 4, the normalized correction terms for the stress-intensity factors are presented for two
parallel cracks interacting with each other. The distance of the micro-crack to the origin is fixed
(R/a = 3, and the angle o = tan~!(x9/x") characterises the position of the micro-crack. The graphs in
Figs. 3 and 4 show the presence of the gradient region in the vicinity of the vertical strip containing the
micro-crack, and it is shown that the amplitude of oscillation of the stress-intensity factors gets larger for
smaller values of the volume fraction parameter f. It is noticeable that the Mode I stress-intensity factor
changes sign, and in the text below we analyse this effect in terms of local stability of the macro-crack.

In Figs. 5 and 6 the normalized perturbation terms of the stress-intensity factors are given for the
cases when o = n/2 and cos~'a/R + n/20 when the orientation of the small micro-crack changes. The
graphs show that there is a point of maximum f* # 0 for the functions K;(f), and this point depends on
o. Fig. 6 corresponds to the case when the micro-crack is located in a neighbourhood of the vertical
strip containing the micro-crack (we observe large amplitude of oscillations of the stress-intensity factors
for this position of the micro-crack).

(2) The crack trajectory. Here, we use formula (7.12) for the normalized crack deflection 4. In Fig. 7
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Fig. 3. Corrections in stress-intensity factors vs. a for f =0, f'=0.2. —right end, - - - left end. (a) The Mode I stress-intensity fac-
tors. (b) The Mode II stress-intensity factors.
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Fig. 4. Correction in stress-intensity factors vs. « for f =0, f=0.5. — right end, - - - left end. (a) The Mode I stress-intensity fac-
tors. (b) The Mode II stress-intensity factors.
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beta

Fig. 5. Corrections in stress-intensity factors vs. f§ for o = (n/2), f = 0.2. —right end, - - - left end. (a) The Mode I stress-intensity
factors. (b) The Mode II stress-intensity factors.

Kil

-2 -1.5 -1 -0.5 (] 0.5 1 1.5 2
beta

Fig. 6. Corrections in stress-intensity factors vs. f for « cos™!(a/R) + (n/20), f = 1.2. — right end, - - - left end. (a) The Mode I
stress-intensity factors. (b) The Mode II stress-intensity factors.
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10 20 30

XOot

Fig. 7. Normalized crack deflection i. — =0, --- f =(n/6), --- f=(n/3), ... p=(n/2). (a) f=0.2. (b) f=0.5.

we show the quantity / for the cases of different orientations of the micro-crack. We note that, in
contrast with the case of isotropic material, the deflection of the macro-crack at infinity depends on the
angle . This dependence is shown in Fig. 8 for different values of the volume fraction parameter f. It is
observed that for smaller f we have larger positive deflection of the macro-crack.
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a b

x1

Fig. 9. Regions of local stability for =0, (R/a)=3: (a) Ki(—a) for f=0.2; (b) Ki(a) for f=0.2; (c) Ki(—a) for f = 0.5; (d) Ki(a)
for f'=0.5.

(3) Local stability. As mentioned above, for certain positions of the micro-crack the perturbation in
the Mode I stress-intensity factor is negative (the macro-crack is locally stable). Again, we use formula
(5.20). In Fig. 9 we show the regions of local stability (regions, bounded by the contours, show location
of the micro-crack) for the case of the macro-crack along the segment [-1,1], f = 0 and different value
of f. Note, that the size of the regions of local stability increases for smaller values of f.

9. Conclusion

We have analysed a challenging singularly perturbed problem of the crack—defect interaction in
orthotropic media with a low resistance to shear. Explicit asymptotic formulae for the stress-intensity
factors and for the crack deflection have been derived, and the phenomenon of local stability was
studied for a macro-crack propagating in inhomogeneous orthotropic solid. The homogenization
procedure was applied to obtain the high-accuracy asymptotic formulae for the effective moduli of the
lattice structure used in the design of a catalytic monolith combustor. The asymptotic algorithm
presented is straightforward for numerical implementation and it is much more efficient compared to the
standard FEM software. Applications of these results are in the modelling of fracture of monolith
combustors in the car industry and gas turbines.
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Appendix A. A finite crack in an orthotropic medium with an arbitrary orientation

Crack problems in orthotropic media are well-studied in the literature. We refer, for example, to the
work of Sih and Liebowitz (1968). Here, we present, for the purpose of reference, the account of main
formulae for the case of a finite crack of an arbitrary orientation in orthotropic media. The integral
equations technique is employed to obtain solutions of model problems described in Section 4 of the
main text.

Consider a plane-strain problem when the stress components satisfy homogeneous equilibrium
equations

2

8 ..
Y 2% =0, i=12 in R\|xxi| <a x40},
=1

dx;
op(x1, £0) =fi(x1), I|xil<a (A.1)
and
g;—0 as [x]| = oo. (A.2)

In addition, we assume that the compatibility equation
V3(a11 +02)=0 (A3)
is satisfied in R*\{x:|x1| < @, x» = 0}. The Airy stress function is introduced in such a way that

94U U
20006 ——~ + o1 — = 0. (A4)

*U U 4
Bx% Bx% 0x Bx% E)x‘z1

Oy —— — 2006 ——— + Ro;r + o
228x? 26 937 o (2012 + 066)

In terms of the Airy stress function the stress components can be written as follows

U U ’U
ol|l=—, Op=—s, Op=——"—" A5
" 8x§ 2 8x% 12 0x1 0Xx7 (A-3)
ouy ?U n 92U 32U
— =0 — tO—s — djg——,
8X1 H ax% 12 8)6% 163)61 8)&72
ouy ’U n 92U 92U
—— =0ap—— +tUn—s —tg——,
dx»> 12 axg 2 8x% 268)61 dx>
duy  duy 32U U U
— t+t— = —s — o> A.6
9x,  0x 16 dx3 + o6 ax? ““axl ax» (A-6)

where o;; are the elastic moduli. For orthotropic media there are four independent constants. In the
system of coordinates whose axes coincide with the principal symmetry axes the matrix of elastic moduli
has the block-diagonal form, so that

€11 =ay oy +apon,
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&) =az 011 + axn 02,

1
€12 =5 66 012,
Then the constants a;; are given by

o = apg cost y + ax sin* y + % (alz +% a66)sin2 2y,
o2 = ayy sin® y + ax cos* y + 4 (a12 + 1 age)sin® 2,
age = (a11 — 2ai» + a»)sin’ 2y + ags cos® 2y,
oy =1 (an — 2a12 + axn — aee)sin’ 2y + apa,

a6 = [Clll cos” y — ay sin® y — (@12 + 5 aee) cos 2?] sin 2y,

t6 = [fm sin®y — ax cos” y + (a12 + 5 aes) cos 2”/] sin 2y,

(A7)

(A.8)

where y is the angle of rotation of the symmetry axes with respect to the system of coordinates

associated with the crack.
Let ¢,, ¢, denote the derivatives of the displacement jumps across the crack

3141

ou; ou; .
¢](x1)=I:a—xlilza—xll(xla-’_o)_a—le(xla_o)ﬂ .]:1527 Supp(rbjc[_aaa]-

Due to the continuity of tractions across the crack

(0] = [ﬂ} o,

8x2

and due to (A.9), the derivatives 92U/dx3, 33U/dx3 have jumps specified by

[2ul_ 1

3)6% _0(11 1( 1)’

_83U- 20(16 , 1 ,
—= | =5 X1)— — X1).
] | = o M T i

(A.9)

(A.10)

(A.11)

Applying the Fourier transform with respect to x,-variable to eqn (A.4) and taking into account (A.10)

and (A.11) we obtain
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o d—4+2oc iﬁd—3 (20112 + o )Bzd—2 20 iﬂ3i+a B |Up(x
22dx? 26 a3 12 + de6 &2 160 g 11 p(x1)
= —5(x1) = iBdy(x1), (A.12)
where
0 .
U/;(xl)zj U(xl,xz)e’ﬁx2 dx,. (A.13)
—00

Here, we assume that the function U and its derivatives decay at infinity, and the integrals involved
exist. Next, we consider the Fourier transform of (A.12) with respect to x;. We remark that the integrals
of functions highly singular at x = +a are treated in the sense of generalized functions. As a result we
deduce

(oot — 202603 B 4 (2012 + )2 B> — 20160 8° + “11ﬁ4]Uﬁ1 = —if ¢y, + ingp,,, (A.14)

where

00 .
Uﬁ“:J Uﬁ(xl)e“’x‘dxl,

—00

bj = J di(x1)e™ dxy. (A.15)
—da
Using (A.14) and inverting the Fourier transform Ug, with respect to o one can derive

N 1 * ( - lﬁ¢lo¢ + ia(bh) e ™1 do
UrD) = 5 L,o (o= mB) (o — 1B) (2 — i1 B) (% — i2B)

ig (¢ (¢ d
=——BJ ¢1(5)g5(€—X1)d€+—J $2(8) —2gp(& — x1) d¢, (A.16)
w2 )y o2 )4 ac
where y,, 4, and ji, i, are the roots of the characteristic polynomial
062224 — 20(2623 + (20(12 + 0566)22 — 2016z + 011 = 0, (A.17)
and
25(0) 1 Joo e™ do
() = = - -
P on ) (= i) (2 — 1aB) (2 — 1 B) (2 — 1aB)

g0, Pi>0

gi(n. pr<0’

L S ST YR S /fz)
1) = ——( —emlbl _ _gimalfl ) A18
(0 = o (e - (A18)
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Here

Vi= (1 — Ho) (W — B — Ha),

Va2 = () — M)ty — By — Ha). (A.19)

It is assumed that p; # p,; otherwise we have to deal with the case of isotropic media. Inverting the
transform with respect to B and using formulae (A.5) we obtain the stress components in the form

1 2 ra ( — )m+n+k73 ( — Iy )m+n+k73
mn 5 = I - k dé. A.20
Omn(X1, %2) o) = J—a m{vl[m(f—)ﬂ)—xz] Vo[ (& — x1) — x| Pile) dt (4.20)

In particular, when (x;, x;) does not belong to the crack surface the following representation may be
useful

a

( _ 'ul)m+n+k—2 B ( _ uz)m+n+k—2
Vi [

D, (E) dE, (A.21)
(€ —x1) —X2]2 Vz[#z(f —x1) —X2]2 } ‘

1 2 a
Omn(X1,X2) = ——— Im
V1o %)) =1 Y-

where @ (k = 1, 2) denotes the displacement jump
Op(x1) = u(x1, + 0) — up(x1, — 0). (A22)

The boundary conditions (A.1) yield the system of singular integral equations

i [¢ $1(E) i [C 98
Wl e R [ aeme
‘a1 r $1(©) dé + A Ja $2(<) dé=fi(x1), —a<xi<a (A.222)
T —a 5 — X1 —a 5 — X1
Here
e L i
A =/Jn= azziR(\/z ” >,
A= im<ﬁ - ﬁ) dot = ii}z(i - i). (A.23)
%)) 1% %) ’ %22 Vi V2

The solution of the system (A.22a) which has integrable singularities at the ends x; = +a of the crack
and satisfies the orthogonality condition

J $AE=0 (j=1.2), (A24)

has the form

& (j=1,2), (A.25)

1 a [ 2y
bj(x1) = — Ja aé_ix‘?j(é)

n/a* — x3 -
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where
Q) = iZZfZ(xl)é_O/llﬂrl(xl)’
_)L /
ga(x1) = 21‘}(2(’“)5: Afixn) (A.26)
00 = A114n — A2t (A.27)

Let us consider a particular case when tractions applied on the crack surface are constant:
Ji(x1)=/fj=const (j=1,2). (A.28)

Then the quantities g;, g, are also constant. In this case the functions ¢;, ®@; [see formulae (A.9) and
(A.22)] have the form

X1gj
$i(x1) = ===, D(x1)=—gy/@> —x}. (A.29)
Jad —x3

The stress components (A.21) are simplified as

1 5 2 2 (— Mj)m+n+k—3( _ 1)./
O-I‘ﬂl’l(xlo XZ): @a—xl; 8k Im J:ZI Vj J_/(X], X2) 5 (A30)
where
a /612 _ 52 df
Ji(x1, x :J _— A.31
S IR (3D
By changing the variable of integration
I_f+a
T 2a
we obtain
2a (" (1 — 1) de
Ji=—| ———, (A.32)
& Jo Ttz
where
wi(x1 +a)+xz
j:—]—¢[—1,0]. (A.33)

2au;

The integral J; is evaluated in the explicit form

T X X2\ 172 x2\'?
Ji(x1, x2)=—| — x1+—2 + x1+a+—2 xl—a+—2 , (A.34)
i K Ky Ky
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X2
arg[x1ta+ —
( “j)

<m, j=1,2. (A.35)

We remark that for the case of real z; the integral (A.32) can be found in Bateman and Erdelyi (1954).
Substituting (A.34) into (A.30) we obtain (4.14).

Appendix B. High-order corrections of the effective moduli

Here, we describe the details of calculations of the constants d;, d> and d5 in the formula (2.6) for the
effective elastic moduli. We consider the juction region shown in Fig. 10, and note that the constants dj
may change as we choose a different geometry of the region of the junction.

A general homogenization procedure
Consider an elastic plane containing a doubly periodic array of inhomogeneities. The case considered
in the present paper corresponds to the situation when the cavities (the channels of the catalytic

monolith combustor) are closely located to each other.
Let the displacement vector u = (i, uy)" satisfy the following system of equilibrium equations

@'<i>H(§)@(i)u(x, E=0 (B.1)
0x 0x

where H(¢) is a 3 x 3 doubly periodic with the unit period matrix-function, & is the matrix differential
operator defined in (2.3) and &€ = (¢, &,) are the scaled coordinates

&1, &)= 871(961, X2)

Here ¢ is the period of the array of inhomogeneities.
The problems of homogenization are discussed in great detail in the books by Bakhvalov and

2)
S

A3) (D

“@
S

Fig. 10. Junction region.
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Panasenko (1989), Bensoussan et al. (1978), Zhikov et al. (1994). Here we present the outline of the
asymptotic procedure to explain the derivation of the formula for the effective elastic moduli.

We shall use the following basis in the space of linear displacement fields that produce non-zero
stresses

0 ; _ X
viD(x) = ( 1), V(Z)(x):<x2) and V(”(x)_ﬁ<xf>, (B.2)

and we also use the vector differential operators V¥ (3/dx), j = 1, 2, 3. Note that

[V(’) <aax>] VO (x) = 5.

The displacement u is sought in the form of the asymptotic series
u~u® +enV 4+ 2u® 4 (B.3)

By direct substitution of (B.3) into (B.1) we derive a recurrent sequence of equations on a unit cell.
These equations are supplied with periodicity conditions in &, and solvability conditions given as the
balance equations for components of the principal force and the principal moment. As a result of this
standard procedure, one has that u” is &-independent

(0)(X),

and the following representation holds

0 (1)
7 (aé)H(z)@(aé) (x. &)

3
=-9' <38§)H(é)@< > (0)(X)=—Z en(x)@’< )H({)@( )V(n)(x)’

n=1

where ¢, are components of the strain vector

el &1l )
e |l=]e =9 (ﬁ)“m)(x),
€3 «/5812

M

and V") are the vectors (B.2). The equilibrium equations for u'” are supplied with periodicity

conditions, and the solution is sought in the form

3
u(l)(X, 6) = Zen(x)w(n)(é)’

where W are periodic vector functions which satisfy the following system of equilibrium equations

(n) (n) —
9(85)H(6)9( é)(w (&) + V(&) = 0
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on a unit cell. The functions W compensate for discrepancies produced by V" on the boundaries of
inhomogeneities. We also note the standard fact that the problem for u'" is solvable. The problem for
u® requires the following solvability condition

o 9 ERWOY
9<ax>’%@(aé>” (x) =0,

where J# = (Jﬁj)ijzl
1S : . . .
Hij=5) J ‘ apq(V(l) +w<l>qu)(vv> + W) de. (B.4)
pag=1Junit cell

We split the region occupied by the material within the unit cell into five parts: four thin rectangles and
the junction region. For the approximation of the fields within thin rectangles we use the asymptotic
formulae presented in Kolaczkowski et al. (1998). Here, we add the contribution from the junction
region in order to obtain the higher-order approximation of elastic moduli and to evaluate the constants
di, d» and d; from (2.6). Assuming that the normalized thickness of rectangles within the unit cell is
equal to ¢ (0 < ¢ < 1) we write the matrix of effective elastic moduli in the form

A =V + P, (B.5)
where
10 0
#V=¢0l0 1 0 |, Q:%
0 0 &

is the part of the matrix of elastic moduli associated with four thin rectangles and

Al A 0
A =20l A A0
0 0 82A3

is the contribution from the junction region; the quantities A;, i = 1, 2, 3 are unknown constants.
Evaluation of the matrix S

The displacement field in the k-th thin rectangle is approximated in the form (we refer to
Kolaczkowski et al., 1998 for detailed calculations),

u(x, 1) ~ U ey o OR) gy LK) 20K 3G (B.6)
where
Arx + By 0
0k — ( ) gk — y)
2 _—[A b
0 A+2u ,
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§ 0k _ < 0 ) §r k) <_I(3Ckx2 +2Dix + Ey) )

Cix® + Dix? + Exx + Fy 0
0 3,1+4ﬂt3_3(z+u)t c
@k _ ] Gk — A+ 2u A+2u :
- 2G3Cx +Dy) | '
T+ 2 (BCkx + Dy) 0

where Ay, Bi, Ck, Dy, Ex, Fy, are constant coefficients, and (x, ¢) are local coordinates with the origin at
the left of the rectangle and ¢ being a scaled variable such that |¢| <1/2 within the rectangle. The field
(B.6) satisfies the equilibrium equations in the rectangle and homogeneous traction boundary conditions
on the upper and lower surfaces.

As mentioned in (B.1), we have to consider three types of fields UY) =V + v ;=1 2 3 where
the vectors V) are given in (B.2) and W) are doubly periodic. In evaluation of the energy integral
only the constants Ay, C; and Dj are required. These constants are specified from the periodicity
boundary conditions allocated for the exterior end regions of thin rods

OGN e<1k> — sM(VD). e({‘), uY . e<2k> — V0 .e(2k> =0 (j=12),

0_(11)(U(3)) X e(2/<) — o_(n) (V(3)) . egk), U(3) . e(lk) — V(3) . e(lk) =0, (B7)
where ¢ is the vector of tractions, and (e(lk), e(zk)) is the local Cartesian basis associated with the k-th
rectangle. Analysis of the boundary layer near the right end of the rectangle yields

(n

3 %(lo,k) 9 (7/(/‘) ) e(]k))

a - ) J = 1a 2
86(1]‘) Be(lk)
and
3 k
o () gty
3el) gl X 2

Consequently, for the fields V) + W), j = 1,2, 3 the non-zero constants Ay, C; and Dy are specified in
the form

j=12 A1=A3=1,

j:2: A22A4:1,

3
ﬁ.

It is verified directly that in the local basis (e(lk), e(zk)) associated with the k-th rectangle

j=3 C=-C=Ci=-C4=-2, Di=—-Dr,=Dy=—-Dy=

o11(u) = Q[ A4k — 2et(3Ckx + Dy) ],
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30+ 242 1) — o).

0-12(u) = ) + 2#

We note that, as x = O(¢)
o11(u) = Q(A; — 2¢etDy) + O(e2). (B.8)

Finally, we consider three traction model problems for the functions 028 j=1,2,3 in the junction
region shown in Fig. 10.

Problem 1. The stress components satisfy the equilibrium equations and homogeneous traction
boundary conditions everywhere except the parts SV and S of the boundary where o,; = Q the shear
stresses vanish on the boundary.

Problem 2 is similar to problem 1. The only change is that we replace SV, S® by §@, §® and
assume that g2, = Q on §®, S® and homogeneous traction boundary conditions are satisfied on the
remaining part of the boundary.

Problem 3. The stress components satisfy the equilibrium equations, and o1 = —2tDj on S ®) k=1,
3, 00 = —2tD on S®), k = 2, 4. The shear stresses are equal to zero on the boundary.

In the numerical computations the stress components are normalized by Young’s modulus, and we
used Poisson’s ratio v = 0.3. The numerical computations were performed with the COSMOS/M Finite
Element Software. The constants A;, A, are specified in the form

A = QJ u, ds = 1.3646, (B.9)
S

Ay = QJ uy ds = —0.4571, (B.10)
S@)

where u,, u, are the displacement components shown in Figs. 11 and 12. To evaluate A3 it is sufficient to
compute the elastic associated with the model problem 3. The contour plot of the energy is given in Fig.
13. As a result, we have

Lin DISP Le=

COSMOSM
Verson V175
VIERT
4-28-97

Fig. 11. Displacement u, in the junction region in the model problem 1 required for evaluation of A; [formula (B.9)].
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hin DISP Lce

COSMOSM
Version . V1.75

vier |

4-29-97

Fig. 12. Displacement u, in the junction region in the model problem 1 required for evaluation of A; [formula (B.10)].

As = 0.891. (B.11)

Finally, we remark that the area fraction f for the region occupied by the material is related to quantity
¢ by

2 — ¢ =,
and, therefore,
e=Lr+ir2+0(f3) (B.12)

for small f. Using (B.9)—(B.12) and the representation (B.5) we derive

COSMOSM

Fig. 13. Energy distribution in the model problem 3 required for evaluation of Az [formula (B.11)].



1930 Y.A. Antipov et al. | International Journal of Solids and Structures 37 (2000) 1899-1930

l+dif dof
%N%Qf de 1 +d1f ) 0 ,
0 0 (+dy)

where

1 A
di =-+—=0.933
1 4+2 0 ,

A
d = 72 = —0.229,

3 A
dy=>+ = =1.19.
=3T3
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