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Abstract

An asymptotic model is presented for the crack±micro-crack interaction in a material characterized by a low
resistance to shear. The material mentioned is obtained by homogenization of the discrete periodic structure used in
the design of a catalytic monolith combustor. The results of the asymptotic analysis enable one to compute the

stress-intensity factors and predict the shape of the crack trajectory. # 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

In this work we analyse the model of fracture for a homogenized domain associated with a catalytic
monolith combustor studied earlier by Kolaczkowski et al. (1998). A detailed description of catalytic
and non-catalytic combustion reactions that take place in a catalytic monolith is available in Hayes and
Kolaczkowski (1997). In this paper, we consider crack propagation in a ceramic monolith with square
shaped cells. A cross-section of the monolith is illustrated in Fig. 1. The cellular monolith structure may
be formed by extrusion of material in the form of a paste through a die, and then ®ring at high
temperatures to form the ceramic.

In a catalytic combustion application, combustible gaseous species ¯ow in a stream of air in the
channels, which are coated with a thin layer of wash-coat that contains the catalyst. It is on the surface
of the walls (in the layer of wash-coat) where, the catalytic combustion takes place. As described in
Hayes and Kolaczkowski (1997) p. 383, channels in a monolith reactor may not operate in an identical
manner. For example, in the event of a fuel maldistribution across the face of the monolith, higher

International Journal of Solids and Structures 37 (2000) 1899±1930

0020-7683/00/$ - see front matter # 2000 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683(98 )00340-0

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +44-151-7944740; fax: +44-151-7944061.

E-mail address: abm@liv.ac.uk (A.B. Movchan)



concentrations of fuel could lead to higher rates of reaction and hence, higher temperatures. This would
result in variations in temperature across the cross-section of the monolith which as a result of thermal
stresses could cause a crack to form. The monolith structure is considered to be a homogenized material
which is anisotropic and for certain types of lattices it has a low resistance to shear. We present the
asymptotic formulae for e�ective elastic moduli to high-order accuracy, and these formulae take into
account the geometry of the periodic structure as well as the shape of junctions between the elements of
the structure. A crack is considered in a homogenized orthotropic material with a small shear modulus
and it interacts with a small micro-crack of arbitrary orientation. Here we develop an accurate
asymptotic procedure for evaluation of the stress-intensity factors and prediction of the shape of the
crack propagating in a catalytic monolith combustor containing micro-cracks.

Asymptotic approach to the analysis of the two-dimensional elastic interaction between the main
crack and micro-cracks was implemented by Hori and Nemat-Nasser (1987) and Gong and Horii (1989)
for the case of isotropic media. Assuming that the distance between the main crack and a micro-crack is
large compared to the length of the micro-crack, the authors presented the series approximations for the
stress-intensity factors and the numerical simulations of local stability of the main crack. For the class
of isotropic materials the asymptotic analysis of crack deviation is presented in Cotterell and Rice
(1980), Movchan et al. (1998) and the crack±defect interaction accompanied by the crack deviation is
discussed in Movchan et al. (1991) and Movchan and Movchan (1995). It is important to mention that
the present problem (for a material with a small shear modulus) is singularly perturbed, and analytical
models of fracture for this type of media were not published elsewhere.

In Section 2 we present the governing equations and the form of the matrix of e�ective elastic moduli.
Section 3 describes the main steps of the asymptotic algorithm, and the model problems involved are
discussed in Section 4. There are three main steps: (i) analysis of the ®eld associated with a large crack;
(ii) construction of the dipole ®eld associated with a micro-crack arbitrary oriented in orthotropic media
with low resistance to shear; (iii) evaluation of the stress-intensity factors. Asymptotic formulae for the
stress-intensity factors are derived in Section 5. The e�ects of singular perturbation associated with a
small shear modulus are discussed in Section 6, where we consider the case of small area fraction for the

Fig. 1. Cracks in a lattice.
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composite media. Numerical results are presented for the perturbation of the stress-intensity factors due
to interaction of the large crack with a micro-crack. The results of computations show the presence of a
high-gradient region in a strip containing a micro-crack. The results of the asymptotic analysis enable us
to proceed further and predict the shape of the crack propagating in a catalytic monolith combustor
with micro-defects. Asymptotic formulae and results of numerical simulations for the crack trajectories
are included in Section 7.

2. Formulation of the problem

Let u be the displacement ®eld which satis®es the boundary value problem

DT

�
@

@x

�
HD

�
@

@x

�
u � 0 in R2n

n
M
[

me

o
,

DT�n�HD
�
@

@x

�
u � p�x� on M2

[
m2

e , �2:1�

where M, me are the cracks speci®ed by

M � �x: jx1j< a, x2 � 0
	
,

me �
n

x: xj � x0
j � ljt, jtj < e

o
, �2:2�

and x0
j , lj are constants (see Fig. 2). The second crack me has a small length de®ned by a non-

dimensional parameter 0< e< 1; for the sake of convenience we assume that l1 � cos b, l2 � sin b, where
b characterises the orientation of the crack me. The di�erential operator D is given as

Fig. 2. Geometry of the problem: a macro-crack M and a micro-crack me.
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and the positive de®nite matrix H of elastic coe�cients has the block-diagonal form

H �

0BB@
c11 fc12 0

fc12 c22 0

0 0 f 2c33

1CCA, 0< f� 1; �2:4�

so that the material is orthotropic and the shear modulus is small; the quantities cij have the same
order-of-magnitude. The vector n denotes the unit outward normal on the crack faces, and the smooth
traction p is supposed to be self-balanced, i.e.�

^2�M2^m2
e �

pj ds � 0, j � 1, 2;

�
^2�M2^m2

e �
�x2p1 ÿ x1p2 � ds � 0: �2:5�

We seek the solution u which vanishes at in®nity.
The above formulation involves two small parameters e and f, where the ®rst one de®nes the

normalized size of the crack me, and the second parameter characterises the resistance of elastic medium
to shear.

Our objective is to develop an accurate asymptotic algorithm for description of the ®eld u and the
stress-intensity factors at the ends of the crack M. Finally, our intention is to show that this algorithm
enables one to predict the trajectory of a crack propagation in a non-homogeneous low-shear-modulus
medium.

The medium is a monolith with square shaped cells as illustrated in Fig. 1. The channels are small
(e.g. 1 � 1 mm) and the wall thickness is about 0.1 mm. The matrix H gives the components of the
homogenized elastic moduli, and it has the form

H � Qf

2

266664
1� d1 f d2 f 0

d2 f 1� d1 f 0

0 0
f 2

4
�1� d3 f�

377775, Q � 4m�l� m�
2m� l

�2:6�

where f is the area fraction for the region occupied by the elastic material with the LameÂ elastic moduli
l and m. The leading-order terms in (2.6) were discussed in Kolaczkowski et al. (1998). The constant
coe�cients d1, d2 and d3 depend upon the shape of the junction region. For a particular case of the
junction shown in Fig. 1 and for Poisson's ratio v = 0.3 we have d1 � 0:933, d2 � ÿ0:229 and
d3 � 1:196. Details of the derivation are given in Appendix B.

3. Main steps of the asymptotic algorithm

The asymptotic approximation of the displacement ®eld u has the form
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u 0 v�x; f� � w�x, e, f�, �3:1�
where v is the ®eld associated with the elastic plane containing a single crack M; the boundary layer
®eld w depends on the scaled coordinates

xj �
xj ÿ x0

j

e
, j � 1, 2, �3:2�

and it is introduced to compensate for an error produced by the ®eld v in the boundary conditions (2.1)
imposed on m2

e . The ®eld w depends on both small parameters f and e (this dependence is unknown a
priori), and we aim to specify the asymptotic formula for w when jxj41.

Finally, the resulting ®eld u yields non-zero tractions on M2 and hence, non-zero stress intensity
factors, which are di�erent from ones associated with the ®eld v.

The asymptotic study involves three main steps:

1. Analysis of a single-crack problem and speci®cation of the stress ®eld sij(v).
2. The boundary layer analysis for a small crack me.
3. Derivation of asymptotic formulae for the stress intensity factors; applications to modelling of a

quasistatic crack propagation.

4. Model problems

4.1. Singular integral equations describing a crack in orthotropic media

Let f1, f2 be HoÈ lder's functions on (ÿa, a ), except its ends, have at the points x � a and x � ÿa an
integrable singularity

fj�x� � O
�
�a 3 x�ÿ1=2

	
, x42 a3 0

and satisfy the orthogonality condition�a
ÿa

fj�x� dx � 0: �4:1�

Then the following integral equations with the Cauchy kernel

lj
p

�a
ÿa

fj�x�
xÿ x1

dx � fj�x1 �, jx1j < a � j � 1, 2� �4:2�

have a unique solution; here we assume that fj are smooth and lj are real constants which depend on
the elastic moduli of the media.

In the physical model, the functions fj describe the derivatives of the displacement jumps across the
crack. The functions fj represent the components of tractions. Namely, if u=(u1, u2) is the displacement
vector then

fj�x1� � @uj
@x1
�x1,� 0� ÿ @uj

@x1
�x1,ÿ 0�, supp fj 2 � ÿ a, a� �4:3�

and
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fj�x1� � sj2�x1,� 0� � sj2�x1,ÿ 0�, j � 1, 2, �4:4�

where sij are stress components associated with the displacement u. The constants lj are de®ned by
l1=l21, l2=l12 where l21, l12 are introduced in Appendix A [formulae (A.23), g � 0]. The solution of
eqns (4.2) under the condition (4.1) is given by the Keldysh±Sedov formula (Sedov, 1972)

fj�x1� � ÿ 1

plj
����������������
a2 ÿ x2

1

q �a
ÿa

���������������
a2 ÿ x2

p
fj�x�

xÿ x1
dx: �4:5�

The stress components exhibit the square root singularity at the ends of the crack, and the stress-
intensity factors are de®ned by

K2
I � lim

x 142a20

��������������������
2pjx13aj

p
s22�x1, 0�,

K2
II � lim

x 142a20

��������������������
2pjx13aj

p
s12�x1, 0�: �4:6�

The explicit formulae for the stress-intensity factors are

K2
I � ÿ

1������
pa
p

�a
ÿa

f2�x�
�
a� x
aÿ x

�21=2

dx,

K2
II � ÿ

1������
pa
p

�a
ÿa

f1�x�
�
a� x
aÿ x

�21=2

dx: �4:7�

4.2. Dipole ®eld associated with a crack in orthotropic media

Let u be the displacement ®eld which satis®es the boundary value problem

c11
@2u1
@x2

1

� fc12
@2u2

@x1 @x2
� 1

2
f 2c33

@

@x2

�
@u1
@x2
� @u2
@x1

�
� 0,

c22
@2u2
@x2

2

� fc12
@2u1

@x1 @x2
� 1

2
f 2c33

@

@x1

�
@u1
@x2
� @u2
@x1

�
� 0, x 2 R2nfmg, �4:8�

and

n1

�
s11
s12

�
� n2

�
s12
s22

�
� p, x 2 m2, �4:9�

kuk4 0 as kxk41: �4:10�

Here n=(n1, n2) is the unit outward normal on the crack surface, and p is a constant vector of tractions.
The stress components sij are speci®ed by
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s11 � c11
@u1
@x1
� fc12

@u2
@x2

, �4:11�

s12 � 1

2
f 2c33

�
@u1
@x1
� @u2
@x2

�
, �4:12�

s22 � c22
@u2
@x2
� fc12

@u1
@x1

: �4:13�

The crack m is de®ned as m � fx: xj � ljt, jtj < 1g, l1 � cos b, l2 � ÿsin b (see Fig. 2). The problem
(4.8)±(4.10) is solvable and its solution is presented in Appendix A (g � b). Here we note that the stress
components in the plane with the crack are equal to

smn�Z1, Z2� �
1

a22

@

@Z1

X2
k�1

gk Im
X2
j�1

� ÿ 1�m�n�k�jmm�n�kÿ4
nj

�
"�

Z1 �
Z2
mj

�
ÿ
�
Z1 � 1� Z2

mj

�1=2�
Z1 ÿ 1� Z2

mj

�1=2
#
, �4:14�

where (Z1, Z2) are local coordinates associated with the crack

Z1 � x1 cos b� x2 sin b,

Z2 � ÿx1 sin b� x2 cos b, �4:15�
and �����arg

�
Z121� Z2

mj

������< p: �4:16�

The constants a22, gk, mj and nj are speci®ed by formulae (A.28), (A.26), (A.17) and (A.19) in Appendix
A (g � b).

As kZZZk41 the stress components have the following asymptotic behaviour

smn�Z1, Z2� � ÿ
1

2a22

X2
k�1

gk Im
X2
j�1

264 � ÿ 1�m�n�k�jmm�n�kÿ4

nj
�
Z1 � mÿ1j Z2

�2 �O

(�
Z1 �

Z2
mj

�ÿ3)375: �4:17�

Formula (4.17) shows that at in®nity we deal with the dipole ®eld; namely it decays with the same rate
as the ®rst-order derivatives of components of Green's tensor.

5. Asymptotics of the stress-intensity factors

(1) First, consider the crack M whose faces M2 are loaded by given tractions and assume that these
tractions are self-balanced (the principal force and moment vectors are equal to zero). It corresponds to
the limit case (when e4 0) of the problem (2.1) when we neglect the presence of the small crack me. Let
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v denote the displacement ®eld. Then f1 � �@n1=@x1�, f2 � �@n2=@x1� are speci®ed by (4.5), where
fi � pj�x1� are given tractions, and l1, l2 are replaced by l21, l12 de®ned in (A.23). The stress
components sij�v; x� are de®ned by (A.20), where g � 0. We introduce the notation

s0ij � sij
ÿ
v; x0

�
�5:1�

for the leading terms of stress components evaluated in the vicinity of the small crack me. Here, we
assume that tractions on m2

e vanish. The ®eld v produces an error in the traction boundary condition
on the faces m2

e :X
j

s0ijnj: �5:2�

(2) In order to compensate for the above error we introduce a boundary layer, i.e. a function w�xxx�
speci®ed in scales coordinates

xxx � xÿ x0

e
, �5:3�

as a solution of the following boundary value problem

DT

�
@

@x

�
HD

�
@

@x

�
w�xxx� � 0 in R2nm,

DT�n�HD
�
@

@x

�
w�xxx� � ÿsss0 � n on m2,

w�xxx�4 0 as kxxxk41: �5:4�
Here m is the scaled crack

m � �xxx: xj � ljt, jtj < 1
	
; �5:5�

lj are the same constants as in (2.2). The ®eld

v�x� � ew�xxx� �5:6�
satis®es, to order O�e� the homogeneous traction boundary condition on m2

e . Namely,

s�n�i

ÿ
v�x� � ew�xxx�; x

� � s0�n�i � �xÿ x0� � rs�n�i

ÿ
v; x0

�
� s�n�i �w; xxx� �O

ÿ
kxÿ x0k2

�
, x 2 me: �5:7�

Equivalently,

s�n�i

ÿ
v�x� � ew�xxx�; x

� � exxx � rs�n�i

ÿ
v; x0

�
�O�e2 �, x 2 me: �5:8�

In the formulae above we adopted the notation

sss�n� � n1

�
s11
s12

�
� n2

�
s12
s22

�
, �5:9�

where n � �n1, n2� is the unit outward normal. In the local rotated coordinates
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ZZZ �
 

cos b ÿsin b

sin b cos b

!
xxx �5:10�

the stress components have the asymptotics (4.17) at in®nity where g � b, lij, gj are speci®ed by
formulae (A.23) and (A.26), and f1, f2 are de®ned as

f1 � f �1 � 1
2 sin 2b

ÿ
s011 ÿ s022

�ÿ cos 2bs012,

f2 � f �2 � ÿ sin2 bs011 ÿ cos2 bs022 � sin 2bs012: �5:11�
(3) The ®eld ew�x� produces a discrepancy in the traction boundary conditions (2.1) on the faces M2 of
the `large' crack. The stress components sij�ew; x� evaluated on M2 have the order O�e2� [see (4.17)]. In
order to compensate for this error we introduce a ®eld e2q�x� such that

DT

�
@

@x

�
HD

�
@

@x

�
q�x� � 0 in R2 nM,

DT�n�HD
�
@

@x

�
q�x� �2F�x� on M2, �5:12�

where

F1 � 1
2 sin 2b

�
S22

ÿ
x 01, x

0
2

�ÿ S11

ÿ
x 01, x

0
2

��ÿ cos 2bS12

ÿ
x 01, x

0
2

�
,

F2 � ÿsin2 bS11

ÿ
x 01, x

0
2

�ÿ cos2 bS22

ÿ
x 01, x

0
2

�ÿ sin 2bS12

ÿ
x 01, x

0
2

�
, �5:13�

x 01 � cos b
ÿ
x1 ÿ x0

1

�ÿ sin bx0
2,

x 02 � ÿsin b
ÿ
x1 ÿ x0

1

�
ÿ cos bx0

2, �5:14�
and

Smn�Z1, Z2� � ÿ
1

2a�22

X2
k�1

g�k Im
X2
j�1

� ÿ 1�m�n�k�jm�m�n�kÿ4j

n�j
�
Z1 �

Z2
m�j

�2
, �5:15�

g�1 �
l�22 f

�
2 ÿ l�12 f

�
1

d�0
, g�2 �

ÿl�21 f �2 � l�11 f
�
1

d�0
: �5:16�

The expressions for the quantities l�mn, d�0, a�22, m�j , n�j are obtained from (A.23), (A.27), (A.8), (A.17)
and (A.19) by replacing g by the value b. Also we assume that the ®eld q(x) decays at in®nity.

On this step the approximation for the displacement vector becomes

u�x, e�0v�x� � ew�ZZZ� � e2q�x�: �5:17�

As x142a and x2 � 0, the stress components sj2 are speci®ed by
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s12 � 1��������������������
2pjx13ajp

h
K2

II �v� � e2K2
II �q�

i
� smaller terms, �5:18�

s22 � 1��������������������
2pjx13ajp

h
K2

I �v� � e2K2
1 �q�

i
� smaller terms: �5:19�

The correction terms e2K 2
I �q�, e2K 2

II �q� associated with the ®eld q have the form

K2
m �q� �

1

2

����
p
a

r X2
n�1

lmn Im
X2
j�1

Enj
1

hj3

0@h1=2jÿ
h1=2j�
ÿ h1=2j�

h1=2jÿ

1A, arg hj2 2 � ÿ p, p�, �5:20�

where K2
m is equal to K2

I for m = 1, and K2
II for m= 2; the quantities Enj are de®ned by formulae

Enj � 1

2d0a�22n�j r2j�

X2
k�1

g�k� ÿ 1�k�jm�kj
X3
m�1

Ljnm �n, j � 1, 2�, �5:21�

Lj11 � 1

m�2j

�
l22 sin2 bÿ 1

2
l12 sin 2b

�
, Lj12 � 1

m�j
� ÿ l22 sin 2b� l12 cos 2b�,

Lj13 � l22 cos2 b� 1

2
l12 sin 2b, Lj21 � 1

m�2j

�
ÿ l21 sin2 b� 1

2
l11 sin 2b

�
,

Lj22 � 1

m�j
�l21 sin 2bÿ l11 cos 2b�, Lj23 � ÿl21 cos2 bÿ 1

2
l11 sin 2b: �5:22�

The quantities hj2, rj� depend on the position of the small crack and the material properties

hj2 � x0
12a� x0

2

rj
, rj �

rj�
rjÿ

, �5:23�

rj� � cos bÿ sin b
mj

, rjÿ � sin b� cos b
mj

: �5:24�

6. Asymptotics for small area fraction f

In this section we analyse the case when the parameter f introduced in (2.6) is small, i.e., the elastic
medium exhibits low resistance to shear.

The compliance matrix Hÿ1 has the form
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Hÿ1 � 2

Q

2666666664
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ÿd2
d�

0

ÿd2
d�

1� d1f

fd�
0

0 0
4

f 3�1� d3f�

3777777775
, �6:1�

where d� � �1� d1 f �2 ÿ d 2
2 f

2. The quantities aij [see (A.8)] are de®ned by

a11 � a22 � 2

Q

�
1� d1 f

f d�
ÿ 1

2
df sin2 2b

�

a66 � 2

Q

"
8 cos2 2b

f 3�1� d3 f� �
2 sin2 2b

f �1� d1 fÿ d2 f�

#
,

a12 � 2

Q

 
ÿ d2

d�
� sin2 2b

2
df

!
,

a16 � ÿa26 � df
Q

sin 4b, �6:2�

where

df � 1� d1 f

f d�
� d2

d�
ÿ 4

f 3�1� d3 f� : �6:3�

Characteristic polynomial. For the case b � 0, p=2 eqn (A.17) is written as

f 2z4 � 8

1� d1 f

 
d�

1� d3 f
ÿ d2 f

3

4

!
z2 � f 2 � 0: �6:4�

Note that the equation degenerates (it reduces its order) as f4 0. The solutions of (6.4) are given by
z1 � m1, z2 � m2, z3 � ÿm1, z4 � ÿm2 where Rmj � 0 � j � 1, 2� and

mj �
2i

f
R1=2

f

241� � ÿ 1� j
 
1ÿ f 4

16R2
f

!1=2
351=2

, Rf � 4d� ÿ d2 f
3�1� d3 f �

4�1� d1 f � �1� d3 f � : �6:5�

As f4 0,

m1 �
if

2
���
2
p

�
1ÿ d0 f

2

�
�O

ÿ
f 3
�
, m2 �

2
����
2i
p

f

�
1� d0 f

2

�
�O� f �: �6:6�

So m14 0 and m241 as f4 0; here d0 � d1 ÿ d3. Thus, two roots z1 and z3 are getting small, whereas
the moduli jz2j � jz4j are large. Accordingly, the quantities n1, n2 from (A.19) and lij [see (A.23)] are
approximated by the formulae
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n1 � 4
���
2
p

i

f

�
1� d0

2
f�O

ÿ
f 2
��
,

n2 � 32
���
2
p

i

f 3

�
1� 3d0

2
f�O

ÿ
f 2
��

�6:7�

and

l11 � l22 � 0, ljk � Q
���
2
p

16
f 2
�
1� d0

2
f�O

ÿ
f 2
��
, k, j � 1, 2; k 6� j: �6:8�

Formulae (A.26) imply

gj�x1� � 16

Q
�������
2f 2

p �
1ÿ d0

2
f�O

ÿ
f 2
��

fj�x1�, j � 1, 2: �6:9�

Examples:
(1) The case when the crack me is parallel to M�b � 0�. Assume that the crack faces M2 are loaded by
constant tractions 2� f1, f2� and that the crack me is free of tractions. The integral equations (4.1)
reduce to

1

p
d

dx1

�a
ÿa

Fj�x�
xÿ x1

dx � 8
���
2
p

Qf 2

�
1ÿ d0

2
f�O

ÿ
f 2
��

fj, �6:10�

and hence, the displacement jumps across the crack M grow as f tends to 0, i.e.

Fj�x� � ÿ8
���
2
p

Q
fj

�
1

f 2
ÿ d0

2f
�O�1�

� ���������������
a2 ÿ x2

q
: �6:11�

It re¯ects the fact that the problem is singularly perturbed with respect to small f. In the text below we
consider expansions in e assuming that f is ®xed. The stress-intensity factors K 0,2

I , K 0,2
II are ®nite and

given by formulae (4.7) with fj, j � 1, 2, being constants:

K 0,2
I � ÿf2

������
pa
p

, K 0,2
II � ÿf1

������
pa
p

: �6:12�

The unperturbed stress components s0ij associated with the crack M have the form

s0mn

ÿ
x0
1, x

0
2

� � 1

a22

X2
k�1

gk Im
X2
j�1

� ÿ 1�m�n�k�jmm�n�kÿ4j

nj
Nj, �6:13�

where

Nj � 1ÿ 1

2

0@H 1=2
j�

H 1=2
jÿ
� H 1=2

jÿ
H 1=2

j�

1A: �6:14�

The quantities Hj2 are de®ned as follows
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Hj2 � x0
1 �

x0
2

mj
2a, jarg Hj2j < p: �6:15�

As f4 0, the coe�cients N1, N2 have the following asymptotics

N1 � f 2a2

16
ÿ
x0
2

�2
241ÿ if��������

2x0
2

q �
x0
1 ÿ i

���
2
p

d0x
0
2

�
�O

ÿ
f 2
�35, �6:16�

N2 � 1ÿm1 ÿ i sgn x0
1m2 f

�
1ÿ d0

2
f

�
� c1 f

2 �O
ÿ
f 3
�
, jx0

1j > a, �6:17�

N2 � 1ÿ i sgn x0
1m1 �m2 f

�
1ÿ d0

2
f

�
� ic2 f

2 �O
ÿ
f 3
�
, jx0

1j < a, �6:18�

where

m1 � jx0
1j�������������������������

jÿx0
1

�2 ÿ a2j
q , m2 � x0

2a
2

2
���
2
p jÿx0

1

�2 ÿ a2j3=2
, �6:19�

c1, c2 are real constants; due to (6.6) and (6.15) the branch-cuts are chosen in such a way that �x0
12a�1=2

� ÿijx0
12aj1=2 when x0

12a< 0.

Remark:. The formulae (6.17) and (6.18) show that the function N2 expanded in f has singular terms as
jx0

1j4 a. The expansion in f gives reliable results outside a neighbourhood of the strip jx0
1j < a� e1 and

when jx0
2j > e2 where e1, e2 are small positive constants. It illustrates the e�ect of the boundary layer

that occurs for small fÐthe original boundary value problem is singularly perturbed as f4 0.

When jx0
1j > a formulae (6.13), (6.16) and (6.17) yield as f4 0

s011
ÿ
x0
1, x

0
2

� � ÿ f 2�1ÿ d0 f �
8

 
1ÿm1 ÿ a2

2
ÿ
x0
2

�2
!
f2 �O

ÿ
f 4
�
:

s022
ÿ
x0
1, x

0
2

�
� �1ÿm1� f2 �O

ÿ
f 2
�
,

s012
ÿ
x0
1, x

0
2

� � f 2�1ÿ d0 f �
2

" 
a2

2
ÿ
x0
2

�2 ÿ 1�m1

!
f1
4
� m2 sgn x0

1���
2
p f2

#
�O

ÿ
f 4
�
: �6:20�

Then, the correction terms for the stress-intensity factors at the ends of the crack M are speci®ed by
formulae (5.20), (5.16) and (5.11) where the components s0ij are given by (6.20). The answer for the
correction terms for the stress-intensity factors is simpli®ed to the form

DK 2
I �

e2
������
pa
p

sgn x0
1�1ÿm1�

2
ÿ
x0
13a

� ���������������������ÿ
x0
1

�2 ÿ a2
q f2 �O

ÿ
f 2
�
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DK 2
II � ÿ

e2f 2
������
pa
p

sgn x0
1�1ÿm1�

ÿ
2x0

12a
�
x0
2

16
ÿ
x0
13a

�hÿ
x0
1

�2ÿa2i3=2
 
1ÿ d0

2

3x0
12a

2x0
12a

f

!
f2 �O

ÿ
f 4
�
: �6:21�

(2) The case when the crack me is perpendicular to M (b=p/2). The asymptotic procedure used for this
case is similar to the one outlined above. When the small crack me is located outside the strip jx1j < a
we derive the following asymptotic formulae for the perturbations of the stress-intensity factors

DK2
I � ÿ

e2f 4

16

������
pa
p 24m3P1 � x0

2

ÿ
2x0

12a
�

sgn x0
1ÿ

x0
13a

�hÿ
x0
1

�2ÿa2i3=2P2

35�O
ÿ
f 5
�
,

DK2
II � ÿ

e2f 4

16

������
pa
p "

m3P2 �
ÿ
2x0

13a
�ÿ

x0
2

�3 P1

#
�
ÿ
f 5
�
: �6:22�

Here, x0
2 6� 0, jx0

1j > a, the quantities m1, m2 are de®ned in (6.19), and m3 as well as P1, P2 are given by

m3 � sgn x0
1ÿ

x0
13a

� ��������������������ÿ
x0
1

�2ÿa2q � 1ÿ
x0
2

�2 ,

P1 � ÿ f2
8

 
1ÿm1 ÿ a2

2
ÿ
x0
2

�2
!
,

P2 �
 

a2

16
ÿ
x0
2

�2 ÿ 1ÿm1

8

!
f1 � f2m2 sgn x0

1

2
���
2
p : �6:23�

We remark that the above asymptotic formulae can be used outside neighbourhoods of the strip
jx0

1j < a and the x1-axis. Also, one can see that the orientation of the crack me is importantÐin the
present case �b � p=2� the correction terms are of order e2f 4 which is smaller compared to the previous
case �b � 0�. This simple illustration shows the qualitative di�erence between the crack±defect
interaction in the isotropic medium, and in the medium which is orthotropic, with a small shear
modulus.

7. Perturbation of the crack trajectory

In this section we consider an example involving a semi-in®nite crack

M1�X� � fx: x2 � 0, x1 < Xg
interacting with a small crack me described in (2.2). We assume that the displacement u satis®es the
equilibrium system (2.1) and homogeneous traction boundary conditions

DT�n�HD
�
@

@x

�
u � 0 on M1,2

[
m2

e , �7:1�
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where M1,2, m2
e denote the crack faces. At in®nity, we assume (see Sih and Liebowitz, 1968) that

smn0
K
�0�
I�������
2pr
p Cmn�y�, r41 �m, n � 1, 2�, �7:2�

where

x0
1 ÿ X � r cos y, x0

2 � r sin y,

Cmn�y� � � ÿ 1�m�nR
(

1

m2 ÿ m1

"
mm�nÿ32ÿ

cos y� mÿ12 sin y
�1=2 ÿ mm�nÿ31ÿ

cos y� mÿ11 sin y
�1=2

#)
: �7:3�

Due to the interaction with a small crack, the stress-intensity factor KII at the end of M1 will not be
zero. However, if we replace M1�X � by a crack M1e �X �.

M1e �X� � fx: x2 � e2h�x1�, x1 < Xg,

where h is smooth then, by appropriate choice of h, we can achieve that KII � 0 i.e. M1e will `propagate'
as a Mode I crack. The latter problem is singularly perturbed, and for the isotropic case the asymptotic
algorithm is described in detail by Movchan et al. (1998). Here, we present the summary of results for
the case of orthotropic medium. First, the stress-intensity factor KII is given by

eÿ2KII � qh 0�X�K �0�I �
�X
ÿ1

z�x1�F1�x1, X� dx1 � 0, �7:4�

where z�x1� is the Mode II weight function for a semi-in®nite crack

z�x1� �
����������������������

2

p�Xÿ x1�

s
, �7:5�

and F1 is the ®rst component of the applied load produced by the small crack me

F1�x1, X� � l21 Im
X2
j�1

E1j�X��
x1 ÿ x0

1 ÿ x0
2r
ÿ1
j

�2 : �7:6�

The coe�cient q in (7.4) is equal to 1/2 (the same as in the isotropic case) due to the fact that the
microcrack is located on the symmetry axis of the orthotropic two-dimensional medium. In general, for
an arbitrary orientation of the crack this coe�cient should be replaced by

q � 1� 1

2
R

1

m1m2
: �7:7�

Due to formulae (5.21) we have

Eij�X� � ÿ K
�0�
I������

2p
p

l21

X2
k�1

g�k�X�Okj, �7:8�
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2a�11n�j r2j�

 
ÿ sin 2b

2m�2j
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m�j
� sin 2b

2

!
, �7:9�

where g�k�X � are de®ned by (5.16) and

f �1�X� � ÿ sin2 bC�11�X� ÿ cos2 bC�22�X� � sin 2bC�12�X�,

f �2�X� �
1

2
sin 2b

�
C�11�X� ÿC�22�X�

�ÿ cos 2bC�12�X�, �7:10�
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2

�1=2
#)
: �7:11�

The crack trajectory is de®ned from di�erential equation (7.4)

h�X� � Im
X2
j�1

X2
k�1

Okj

�X
ÿ1

g�k�X�
 
x0
1 �

x0
2

rj
ÿ X

!ÿ3=2
dX, arg

 
x0
1 �

x0
2

rj
ÿ X

!
2 � ÿ p, p�: �7:12�

The results of calculations show that the de¯ection at in®nity is the same as the one at the point
x1 � x0

1.

8. Numerical results

Here, we present numerical illustration of the asymptotic formulae derived in the sections above. The
tractions components (s22 � ÿ1, s12 � 0) are speci®ed on the faces of the macro-crack, and the micro-
crack is assumed to be free of fractions. First, we give examples of calculations for the stress-intensity
factors. Second, we analyse the trajectory of the crack interacting with a micro-crack. Finally, a local
stability is studied for a large crack in an inhomogeneous solid.

(1) Evaluation of the stress-intensity factors. In the numerical calculations we used formula (5.20) for
the stress-intensity factors. We remark that the asymptotic formulae (6.21) and (6.22) give good
agreement with (5.20) when the micro-crack is located outside a neighbourhood of the strip jx1j < a.

In Figs. 3 and 4, the normalized correction terms for the stress-intensity factors are presented for two
parallel cracks interacting with each other. The distance of the micro-crack to the origin is ®xed
(R/a = 3, and the angle a � tanÿ1�x0

2=x
0
1� characterises the position of the micro-crack. The graphs in

Figs. 3 and 4 show the presence of the gradient region in the vicinity of the vertical strip containing the
micro-crack, and it is shown that the amplitude of oscillation of the stress-intensity factors gets larger for
smaller values of the volume fraction parameter f. It is noticeable that the Mode I stress-intensity factor
changes sign, and in the text below we analyse this e�ect in terms of local stability of the macro-crack.

In Figs. 5 and 6 the normalized perturbation terms of the stress-intensity factors are given for the
cases when a � p=2 and cosÿ1a=R� p=20 when the orientation of the small micro-crack changes. The
graphs show that there is a point of maximum b� 6� 0 for the functions Kj�b�, and this point depends on
a. Fig. 6 corresponds to the case when the micro-crack is located in a neighbourhood of the vertical
strip containing the micro-crack (we observe large amplitude of oscillations of the stress-intensity factors
for this position of the micro-crack).

(2) The crack trajectory. Here, we use formula (7.12) for the normalized crack de¯ection h. In Fig. 7

Y.A. Antipov et al. / International Journal of Solids and Structures 37 (2000) 1899±19301914



Fig. 4. Correction in stress-intensity factors vs. a for b � 0, f � 0:5. Ð right end, - - - left end. (a) The Mode I stress-intensity fac-

tors. (b) The Mode II stress-intensity factors.

Fig. 3. Corrections in stress-intensity factors vs. a for b � 0, f � 0:2. Ðright end, - - - left end. (a) The Mode I stress-intensity fac-

tors. (b) The Mode II stress-intensity factors.
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Fig. 6. Corrections in stress-intensity factors vs. b for a cosÿ1�a=R� � �p=20�, f � 1:2. Ð right end, - - - left end. (a) The Mode I

stress-intensity factors. (b) The Mode II stress-intensity factors.

Fig. 5. Corrections in stress-intensity factors vs. b for a � �p=2�, f � 0:2. Ðright end, - - - left end. (a) The Mode I stress-intensity

factors. (b) The Mode II stress-intensity factors.
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we show the quantity h for the cases of di�erent orientations of the micro-crack. We note that, in
contrast with the case of isotropic material, the de¯ection of the macro-crack at in®nity depends on the
angle b. This dependence is shown in Fig. 8 for di�erent values of the volume fraction parameter f. It is
observed that for smaller f we have larger positive de¯ection of the macro-crack.

Fig. 8. Dependence of the crack de¯ection h�1� on b.Ð f= 0.2. - - - f= 0.3. � - � f= 0.5.

Fig. 7. Normalized crack de¯ection h. Ð b � 0, - - - b � �p=6�, � - � b � �p=3�, . . . b � �p=2�. (a) f � 0:2. (b) f � 0:5.
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(3) Local stability. As mentioned above, for certain positions of the micro-crack the perturbation in
the Mode I stress-intensity factor is negative (the macro-crack is locally stable). Again, we use formula
(5.20). In Fig. 9 we show the regions of local stability (regions, bounded by the contours, show location
of the micro-crack) for the case of the macro-crack along the segment [±1, 1], b � 0 and di�erent value
of f. Note, that the size of the regions of local stability increases for smaller values of f.

9. Conclusion

We have analysed a challenging singularly perturbed problem of the crack±defect interaction in
orthotropic media with a low resistance to shear. Explicit asymptotic formulae for the stress-intensity
factors and for the crack de¯ection have been derived, and the phenomenon of local stability was
studied for a macro-crack propagating in inhomogeneous orthotropic solid. The homogenization
procedure was applied to obtain the high-accuracy asymptotic formulae for the e�ective moduli of the
lattice structure used in the design of a catalytic monolith combustor. The asymptotic algorithm
presented is straightforward for numerical implementation and it is much more e�cient compared to the
standard FEM software. Applications of these results are in the modelling of fracture of monolith
combustors in the car industry and gas turbines.
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Fig. 9. Regions of local stability for b � 0, (R/a )=3: (a) KI�ÿa� for f � 0:2; (b) KI�a� for f � 0:2; (c) KI�ÿa� for f= 0.5; (d) KI�a�
for f= 0.5.
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Appendix A. A ®nite crack in an orthotropic medium with an arbitrary orientation

Crack problems in orthotropic media are well-studied in the literature. We refer, for example, to the
work of Sih and Liebowitz (1968). Here, we present, for the purpose of reference, the account of main
formulae for the case of a ®nite crack of an arbitrary orientation in orthotropic media. The integral
equations technique is employed to obtain solutions of model problems described in Section 4 of the
main text.

Consider a plane-strain problem when the stress components satisfy homogeneous equilibrium
equations

X2
j�1

@sij
@xj
� 0, i � 1, 2 in R2n�x:jx1j < a, x2 � 0

	
,

sj2�x1, 20� � f1�x1�, jx1j < a �A:1�

and

sij4 0 as kxk41: �A:2�
In addition, we assume that the compatibility equation

r2�s11 � s22 � � 0 �A:3�
is satis®ed in R2nfx:jx1j < a, x2 � 0g. The Airy stress function is introduced in such a way that

a22
@ 4U

@x4
1

ÿ 2a26
@4U

@x3
1 @x2

� �2a12 � a66 � @4U

@x2
1 @x

2
2

ÿ 2a16
@4U

@x1 @x3
2

� a11
@4U

@x4
2

� 0: �A:4�

In terms of the Airy stress function the stress components can be written as follows

s11 � @2U

@x2
2

, s22 � @2U

@x2
1

, s12 � ÿ @2U

@x1 @x2
, �A:5�

@u1
@x1
� a11

@ 2U

@x2
2

� a12
@2U

@x2
1

ÿ a16
@2U

@x1 @x2
,

@u2
@x2
� a12

@ 2U

@x2
2

� a22
@2U

@x2
1

ÿ a26
@2U

@x1 @x2
,

@u1
@x2
� @u2
@x1
� a16

@2U

@x2
2

� a26
@2U

@x2
1

ÿ a66
@2U

@x1 @x2
, �A:6�

where aij are the elastic moduli. For orthotropic media there are four independent constants. In the
system of coordinates whose axes coincide with the principal symmetry axes the matrix of elastic moduli
has the block-diagonal form, so that

e11 � a11 s11 � a12 s22,
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e22 � a21 s11 � a22 s22,

e12 � 1
2 a66 s12, �A:7�

Then the constants aij are given by

a11 � a11 cos4 g� a22 sin4 g� 1
2

ÿ
a12 � 1

2 a66
�
sin2 2g,

a22 � a11 sin4 g� a22 cos4 g� 1
2

ÿ
a12 � 1

2 a66
�
sin2 2g,

a66 � �a11 ÿ 2a12 � a22 �sin2 2g� a66 cos2 2g,

a12 � 1
4
�a11 ÿ 2a12 � a22 ÿ a66 �sin2 2g� a12,

a16 �
h
a11 cos2 gÿ a22 sin2 gÿ ÿa12 � 1

2 a66
�

cos 2g
i

sin 2g,

a26 �
h
a11 sin2gÿ a22 cos2 g� ÿa12 � 1

2 a66
�

cos 2g
i

sin 2g, �A:8�

where g is the angle of rotation of the symmetry axes with respect to the system of coordinates
associated with the crack.

Let f1, f2 denote the derivatives of the displacement jumps across the crack

fj�x1� �
�
@u1
@x1

�
� @uj
@x1
�x1,� 0� ÿ @uj

@x1
�x1,ÿ 0�, j � 1, 2, supp fj � � ÿ a, a�: �A:9�

Due to the continuity of tractions across the crack

�U� �
�
@U

@x2

�
� 0, �A:10�

and due to (A.9), the derivatives @2U=@x2
2, @

3U=@x3
2 have jumps speci®ed by"

@2U

@x2
2

#
� 1

a11
f1�x1�,

"
@3U

@x3
2

#
� 2a16

a211
f 01�x1 � ÿ 1

a11
f 02�x1 �: �A:11�

Applying the Fourier transform with respect to x2-variable to eqn (A.4) and taking into account (A.10)
and (A.11) we obtain
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a22
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dx4
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� 2a26ib
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ÿ 2a16ib
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where

Ub�x1� �
�1
ÿ1

U�x1, x2 � eibx 2 dx2: �A:13�

Here, we assume that the function U and its derivatives decay at in®nity, and the integrals involved
exist. Next, we consider the Fourier transform of (A.12) with respect to x1. We remark that the integrals
of functions highly singular at x �2a are treated in the sense of generalized functions. As a result we
deduce�

a22a4 ÿ 2a26a3b� �2a12 � a66 �a2b2 ÿ 2a16ab
3 � a11b

4
�
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where
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fj�x1� eiax 1 dx1: �A:15�

Using (A.14) and inverting the Fourier transform Uba with respect to a one can derive
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2pa22

�1
ÿ1

ÿÿ ibf1a � iaf2a

�
eÿiax 1 daÿ

aÿ m1b
�ÿ
aÿ m2b

�ÿ
aÿ �m1b

�ÿ
aÿ �m2b

�
� ÿ ib

a22

�a
ÿa

f1�x�gb�xÿ x1� dx� 1

a22

�a
ÿa

f2�x�
@

@x
gb�xÿ x1� dx, �A:16�

where m1, m2 and �m1, �m2 are the roots of the characteristic polynomial

a22z4 ÿ 2a26z3 � �2a12 � a66 �z2 ÿ 2a16z� a11 � 0, �A:17�
and

gb�t� � 1

2p

�1
ÿ1

eiat daÿ
aÿ m1b

�ÿ
aÿ m2b

�ÿ
aÿ �m1b

�ÿ
aÿ �m2b

�

�
8<: g�b �t�, bt > 0

g�b �t�, bt < 0
,

g�b �t� �
i

jbj3
�
1

n1
eim1jbtj ÿ 1

n2
eim2jbtj

�
: �A:18�
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Here

n1 � �m1 ÿ m2��m1 ÿ �m1��m1 ÿ �m2�,

n2 � �m1 ÿ m2��m2 ÿ �m1��m2 ÿ �m2�: �A:19�

It is assumed that m1 6� m2; otherwise we have to deal with the case of isotropic media. Inverting the
transform with respect to b and using formulae (A.5) we obtain the stress components in the form

smn�x1, x2 � � 1

pa22

X2
k�1

�a
ÿa

Im

(
� ÿ m1�m�n�kÿ3

n1
�
m1�xÿ x1� ÿ x2

� ÿ � ÿ m2�m�n�kÿ3
n2
�
m2�xÿ x1� ÿ x2

�)fk�x� dx: �A:20�

In particular, when �x1, x2� does not belong to the crack surface the following representation may be
useful

smn�x1,x2� � ÿ 1

pa22

X2
k�1

�a
ÿa

Im

(
� ÿ m1�m�n�kÿ2

n1
�
m1�xÿ x1� ÿ x2

�2 ÿ � ÿ m2 �m�n�kÿ2
n2
�
m2�xÿ x1� ÿ x2

�2
)
Fk�x� dx, �A:21�

where Fk (k= 1, 2) denotes the displacement jump

Fk�x1� � uk�x1,� 0� ÿ uk�x1,ÿ 0�: �A:22�
The boundary conditions (A.1) yield the system of singular integral equations

l11
p

�a
ÿa

f1�x�
xÿ x1

dx� l12
p

�a
ÿa

f2�x�
xÿ x1

dx � f2�x1�,

l21
p

�a
ÿa

f1�x�
xÿ x1

dx� l22
p

�a
ÿa

f2�x�
xÿ x1

dx � f1�x1�, ÿ a < x1 < a: �A:22a�

Here

l11 � l22 � 1

a22
R

�
im2
n2
ÿ im1

n1

�
,

l12 � 1

a22
R

�
im21
n1
ÿ im22

n2

�
, l21 � 1

a22
R

�
i

n1
ÿ i

n2

�
: �A:23�

The solution of the system (A.22a) which has integrable singularities at the ends x1 �2a of the crack
and satis®es the orthogonality condition�a

ÿa
fj�x� dx � 0 � j � 1, 2�, �A:24�

has the form

fj�x1� � ÿ 1

p
����������������
a2 ÿ x2

1

q �a
ÿa

���������������
a2 ÿ x2

p
gj�x�

xÿ x1
dx � j � 1, 2�, �A:25�
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where

g1�x1 � � l22 f2�x1 � ÿ l12 f1�x1 �
d0

,

g2�x1 � � ÿl21 f2�x1� � l11 f1�x1�
d0

, �A:26�

d0 � l11l22 ÿ l12l21: �A:27�
Let us consider a particular case when tractions applied on the crack surface are constant:

fj�x1� � fj � const � j � 1, 2�: �A:28�
Then the quantities g1, g2 are also constant. In this case the functions fj, Fj [see formulae (A.9) and
(A.22)] have the form

fj�x1� � x1gj����������������
a2 ÿ x2

1

q , Fj�x1� � ÿgj
����������������
a2 ÿ x2

1

q
: �A:29�

The stress components (A.21) are simpli®ed as

smn�x1, x2 � � 1

pa22

@

@x1

X2
k�1

gk Im

8<:X2
j�1

� ÿ mj �m�n�kÿ3� ÿ 1� j
nj

Jj�x1, x2�
9=;, �A:30�

where

Jj�x1, x2� �
�a
ÿa

���������������
a2 ÿ x2

p
dx

mj�xÿ x1� ÿ x2
: �A:31�

By changing the variable of integration

t � x� a

2a

we obtain

Jj � 2a

mj

�1
0

����������������������
t�1ÿ t� dt

p
t� zj

, �A:32�

where

zj � ÿ
mj�x1 � a� � x2

2amj
=2 � ÿ 1, 0�: �A:33�

The integral Jj is evaluated in the explicit form

Jj�x1, x2� � p
mj

"
ÿ
�
x1 � x2

mj

�
�
�
x1 � a� x2

mj

�1=2�
x1 ÿ a� x2

mj

�1=2
#
, �A:34�
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�����arg
�
x12a� x2

mj

������ < p, j � 1, 2: �A:35�

We remark that for the case of real zj the integral (A.32) can be found in Bateman and Erdelyi (1954).
Substituting (A.34) into (A.30) we obtain (4.14).

Appendix B. High-order corrections of the e�ective moduli

Here, we describe the details of calculations of the constants d1, d2 and d3 in the formula (2.6) for the
e�ective elastic moduli. We consider the juction region shown in Fig. 10, and note that the constants dj
may change as we choose a di�erent geometry of the region of the junction.

A general homogenization procedure

Consider an elastic plane containing a doubly periodic array of inhomogeneities. The case considered
in the present paper corresponds to the situation when the cavities (the channels of the catalytic
monolith combustor) are closely located to each other.

Let the displacement vector u � �u1, u2�t satisfy the following system of equilibrium equations

Dt

�
@

@x

�
H�xxx�D

�
@

@x

�
u�x, xxx� � 0 �B:1�

where H(xx) is a 3 � 3 doubly periodic with the unit period matrix-function, D is the matrix di�erential
operator de®ned in (2.3) and xxx � �x1, x2� are the scaled coordinates

�x1, x2 � � eÿ1�x1, x2�
Here e is the period of the array of inhomogeneities.

The problems of homogenization are discussed in great detail in the books by Bakhvalov and

Fig. 10. Junction region.
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Panasenko (1989), Bensoussan et al. (1978), Zhikov et al. (1994). Here we present the outline of the
asymptotic procedure to explain the derivation of the formula for the e�ective elastic moduli.

We shall use the following basis in the space of linear displacement ®elds that produce non-zero
stresses

V�1��x� �
�
x1

0

�
, V�2��x� �

�
0
x2

�
and V�3��x� � 1���

2
p

�
x2

x1

�
, �B:2�

and we also use the vector di�erential operators V�j ��@=@x�, j � 1, 2, 3: Note that�
V�j�

�
@

@x

��t
V
�k��x� � djk:

The displacement u is sought in the form of the asymptotic series

u0u�0� � eu�1� � e2u�2� � . . . : �B:3�
By direct substitution of (B.3) into (B.1) we derive a recurrent sequence of equations on a unit cell.
These equations are supplied with periodicity conditions in xxx, and solvability conditions given as the
balance equations for components of the principal force and the principal moment. As a result of this
standard procedure, one has that u(0) is xxx-independent

u�0� � u�0��x�,
and the following representation holds

Dt

�
@

@x

�
H�xxx�D

�
@

@x

�
u�1��x, xxx�

� ÿDt

�
@

@x

�
H�xxx�D

�
@

@x

�
u�0��x� � ÿ

X3
n�1

en�x�Dt

�
@

@x

�
H�xxx�D

�
@

@x

�
V�n��x�,

where en are components of the strain vector0BB@
e1

e2

e3

1CCA �
0BB@
e11

e22���
2
p

e12

1CCA � D
�
@

@x

�
u�0��x�,

and V(n ) are the vectors (B.2). The equilibrium equations for u(1) are supplied with periodicity
conditions, and the solution is sought in the form

u�1��x, xxx� �
X3
n�1

en�x�W�n��xxx�,

where W(n ) are periodic vector functions which satisfy the following system of equilibrium equations

Dt

�
@

@x

�
H�xxx�D

�
@

@x

�ÿ
W�n��xxx� � V�n��xxx�

�
� 0
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on a unit cell. The functions W(n ) compensate for discrepancies produced by V(n ) on the boundaries of
inhomogeneities. We also note the standard fact that the problem for u(1) is solvable. The problem for
u(2) requires the following solvability condition

Dt

�
@

@x

�
HD

�
@

@x

�
u�0��x� � 0,

where H � �Hij �3i,j�1

Hij � 1

2

X3
p,q�1

�
unit cell

spq
�

V�i� �W�i�epq
�ÿ

V�j� �W� j �
�

dx: �B:4�

We split the region occupied by the material within the unit cell into ®ve parts: four thin rectangles and
the junction region. For the approximation of the ®elds within thin rectangles we use the asymptotic
formulae presented in Kolaczkowski et al. (1998). Here, we add the contribution from the junction
region in order to obtain the higher-order approximation of elastic moduli and to evaluate the constants
d1, d2 and d3 from (2.6). Assuming that the normalized thickness of rectangles within the unit cell is
equal to e �0< e� 1� we write the matrix of e�ective elastic moduli in the form

H �H�1� �H�2�, �B:5�
where

H�1� � eQ

0BB@
1 0 0

0 1 0

0 0 e2

1CCA, Q � 4m�l� m�
2m� l

is the part of the matrix of elastic moduli associated with four thin rectangles and

H�2� � e2Q

0BB@
D1 D2 0

D2 D1 0

0 0 e2D3

1CCA
is the contribution from the junction region; the quantities Di, i= 1, 2, 3 are unknown constants.

Evaluation of the matrix H

The displacement ®eld in the k-th thin rectangle is approximated in the form (we refer to
Kolaczkowski et al., 1998 for detailed calculations),

u�x, t�0 U�0,k� � eU�1,k� �V�0,k� � eV�1,k� � e2V�2,k� � e3V�3,K�, �B:6�
where

U�0,k� �
 
Akx� Bk

0

!
, U�1,k� �

0B@ 0

ÿ l
l� 2m

tAk

1CA,
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V�0,k� �
 

0

Ckx
3 �Dkx

2 � Ekx� Fk

!
, V�1,k� �

 
ÿt
ÿ
3Ckx

2 � 2Dkx� Ek

�
0

!
,

V�2,k� �

0B@ 0

ÿ l
l� 2m

t2�3Ckx�Dk �

1CA, V�3,k� �

0B@
�
3l� 4m
l� 2m

t3 ÿ 3�l� m�
l� 2m

t

�
Ck

0

1CA,
where Ak, Bk, Ck, Dk, Ek, Fk are constant coe�cients, and (x, t ) are local coordinates with the origin at
the left of the rectangle and t being a scaled variable such that |t|<1/2 within the rectangle. The ®eld
(B.6) satis®es the equilibrium equations in the rectangle and homogeneous traction boundary conditions
on the upper and lower surfaces.

As mentioned in (B.1), we have to consider three types of ®elds U( j )=V( j )+V( j ), j= 1, 2, 3, where
the vectors V( j ) are given in (B.2) and W( j ) are doubly periodic. In evaluation of the energy integral
only the constants Ak, Ck and Dk are required. These constants are speci®ed from the periodicity
boundary conditions allocated for the exterior end regions of thin rods

sss�n��U�j� � � e�k�1 � sss�n��V�j� � � e�k�1 , U�j� � e�k�2 � V�j� � e�k�2 � 0 � j � 1, 2�,

sss�n�
ÿ
U�3�

�
� e�k�2 � sss�n�

ÿ
V�3�

�
� e�k�2 , U�3� � e�k�1 � V�3� � e�k�1 � 0, �B:7�

where ss(n ) is the vector of tractions, and �e�k�1 , e
�k�
2 � is the local Cartesian basis associated with the k-th

rectangle. Analysis of the boundary layer near the right end of the rectangle yields

@U�0,k�1

@e�k�1

�
@
�
V�j� � e�k�1

�
@e�k�1

, j � 1, 2

and

@V�0,k�2

@e�k�1

�
@
�
V�3� � e�k�2

�
@e�k�1

,
@2V�0,k�2 �x�

@x2
� 0 at x � 1

2
:

Consequently, for the ®elds V�j � � W�j �, j � 1, 2, 3 the non-zero constants Ak, Ck and Dk are speci®ed in
the form

j � 1: A1 � A3 � 1,

j � 2: A2 � A4 � 1,

j � 3: C1 � ÿC2 � C3 � ÿC4 � ÿ
���
2
p

, D1 � ÿD2 � D3 � ÿD4 � 3���
2
p :

It is veri®ed directly that in the local basis �e�k�1 , e
�k�
2 � associated with the k-th rectangle

s11�u� � Q
�
Ak ÿ 2et�3Ckx�Dk �

�
,
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s12�u� � 3Qm�l� m�
l� 2m

e2�4t2 ÿ 1� � O�e2�:

We note that, as x � O�e�
s11�u� � Q�Ak ÿ 2etDk � �O�e2�: �B:8�

Finally, we consider three traction model problems for the functions U�j �, j � 1, 2, 3 in the junction
region shown in Fig. 10.

Problem 1. The stress components satisfy the equilibrium equations and homogeneous traction
boundary conditions everywhere except the parts S (1) and S (3) of the boundary where s11 � Q the shear
stresses vanish on the boundary.

Problem 2 is similar to problem 1. The only change is that we replace S (1), S (3) by S (2), S (4) and
assume that s22 � Q on S �2�, S �4� and homogeneous traction boundary conditions are satis®ed on the
remaining part of the boundary.

Problem 3. The stress components satisfy the equilibrium equations, and s11 � ÿ2tDk on S (k ), k= 1,
3, s22 � ÿ2tDk on S (k ), k= 2, 4. The shear stresses are equal to zero on the boundary.

In the numerical computations the stress components are normalized by Young's modulus, and we
used Poisson's ratio n = 0.3. The numerical computations were performed with the COSMOS/M Finite
Element Software. The constants D1, D2 are speci®ed in the form

D1 � Q

�
S �1 �

ux ds � 1:3646, �B:9�

D2 � Q

�
S �2 �

uy ds � ÿ0:4571, �B:10�

where ux, uy are the displacement components shown in Figs. 11 and 12. To evaluate D3 it is su�cient to
compute the elastic associated with the model problem 3. The contour plot of the energy is given in Fig.
13. As a result, we have

Fig. 11. Displacement ux in the junction region in the model problem 1 required for evaluation of D1 [formula (B.9)].
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D3 � 0:891: �B:11�
Finally, we remark that the area fraction f for the region occupied by the material is related to quantity
e by

2eÿ e2 � f,

and, therefore,

e � 1
2 f� 1

8 f 2 �O
ÿ
f 3
�

�B:12�

for small f. Using (B.9)±(B.12) and the representation (B.5) we derive

Fig. 12. Displacement uy in the junction region in the model problem 1 required for evaluation of D2 [formula (B.10)].

Fig. 13. Energy distribution in the model problem 3 required for evaluation of D3 [formula (B.11)].
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H01

2
Qf

266664
1� d1 f d2 f 0

d2 f 1� d1 f 0

0 0
f 2

4
�1� d3f �

377775,
where

d1 � 1

4
� D1

2
� 0:933,

d2 � D2

2
� ÿ0:229,

d3 � 3

4
� D3

2
� 1:196:
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